Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 10-11 класс»
весенний тур, тренировочный вариант, 10-11 класс
НазадВ какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
В угол вписана окружность с центром <i>O</i>. Через точку <i>A</i>, симметричную точке <i>O</i> относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки <i>A</i> стороной угла – <i>B</i> и <i>C</i>. Докажите, что центр описанной окружности треугольника <i>ABC</i> лежит на биссектрисе данного угла.
Положительные числа <i>A, B, C</i> и <i>D</i> таковы, что система уравнений
<i>x</i>² + <i>y</i>² = <i>A</i>,
|<i>x| + |y| = B</i>
имеет <i>m</i> решений, а система уравнений
<i>x</i>² + <i>y</i>² + <i>z</i>² = <i>C</i>,
|<i>x| + |y| + |z| = D</i>
имеет <i>n</i> решений. Известно, что <i>m > n</i> > 1. Найдите <i>m</i> и <i>n</i>.
Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)
а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? б) Тот же вопрос для четырёхзначных чисел.