Олимпиадные задачи из источника «14 турнир (1992/1993 год)» для 2-7 класса - сложность 2 с решениями

Бумажный треугольник с углами 20°, 20°, 140° разрезается по одной из своих биссектрис на два треугольника, один из которых также разрезается по биссектрисе, и так далее. Может ли после нескольких разрезов получиться треугольник, подобный исходному?

Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.

Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

Имеется два дома, в каждом по два подъезда. Жильцы держат кошек и собак, причём доля кошек (отношение числа кошек к общему числу кошек и собак) в первом подъезде первого дома больше доли кошек в первом подъезде второго дома, а доля кошек во втором подъезде первого дома больше доли кошек во втором подъезде второго дома. Верно ли, что доля кошек в первом доме больше доли кошек во втором доме?

Докажите, что существует такой набор из 100 различных натуральных чисел <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub>, ..., <i>c</i><sub>100</sub>, что для любых двух соседних чисел <i>c<sub>i</sub></i> и <i>c</i><sub><i>i</i>+1</sub> этого набора сумма   <img align="absmiddle" src="/storage/problem-media/98157/problem_98157_img_2.gif">   есть квадрат целого числа.

Дан куб с ребром длины <i>n</i> см. В нашем распоряжении имеется длинный кусок изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента может свободно переходить через ребро на другую грань, по грани она должна идти по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?

В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а каждые двое встречались в вылазках ровно по разу.

Докажите, что один из террористов участвовал не менее чем в 11 различных вылазках.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка