Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 10-11 класс»
весенний тур, тренировочный вариант, 10-11 класс
НазадЧетырёхугольник <i>ABCD</i> вписанный, <i>M</i> – точка пересечения прямых <i>AB</i> и <i>CD, N</i> – точка пересечения прямых <i>BC</i> и <i>AD</i>. Известно, что <i>BM = DN</i>.
Докажите, что <i>CM = CN</i>.
Есть три кучи камней. Разрешается к любой из них добавить столько камней, сколько есть в двух других кучах, или из любой кучи выбросить столько камней, сколько есть в двух других кучах. Например: (12, 3, 5) → (12, 20, 5) (или (4, 3, 5)). Можно ли, начав с куч 1993, 199 и 19, сделать одну из куч пустой?
Рассматривается числовой треугольник: <div align="center"><img src="/storage/problem-media/98176/problem_98176_img_2.gif"></div>(первая строчка задана, а каждый элемент остальных строчек вычисляется как разность двух элементов, которые стоят над ним). В 1993-й строчке – один элемент. Найдите его.
Найти все такие числа вида 2<sup><i>n</i></sup> (<i>n</i> натурально), что при вычёркивании первой цифры их десятичной записи снова получится степень двойки.