Олимпиадные задачи из источника «2016 год» для 7-9 класса - сложность 2 с решениями

Высоты неравнобедренного остроугольного треугольника <i>ABC</i> пересекаются в точке <i>H. O</i> – центр описанной окружности треугольника <i>BHC</i>. Центр <i>I</i> вписанной окружности треугольника <i>ABC</i> лежит на отрезке <i>OA</i>. Найдите угол <i>A</i>.

Что больше:   <img align="absmiddle" src="/storage/problem-media/65908/problem_65908_img_2.gif">   или   <img align="absmiddle" src="/storage/problem-media/65908/problem_65908_img_3.gif">

  В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AD</i> и <i>CE</i>. Точки <i>M</i> и <i>N</i> – основания перпендикуляров, опущенных на прямую <i>DE</i> из точек <i>A</i> и <i>C</i> соответственно. Докажите, что  <i>ME = DN</i>.

На доске записаны двузначные числа. Каждое число составное, но любые два числа взаимно просты.

Какое наибольшее количество чисел может быть записано?

В зоопарке есть 10 слонов и огромные чашечные весы. Известно, что если любые четыре слона встанут на левую чашу весов, а любые три – на правую, то левая чаша перевесит. Пять слонов встали на левую чашу и четыре – на правую. Обязательно ли левая чаша перевесит?

В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?

Точки пересечения графиков четырёх функций, заданных формулами  <i>y = kx + b,  y = kx – b,  y = mx + b</i>  и  <i>y = mx – b</i>,  являются вершинами четырёхугольника. Найдите координаты точки пересечения его диагоналей.

Расставьте в левой части равенства   <img align="absmiddle" src="/storage/problem-media/65900/problem_65900_img_2.gif">   знаки арифметических операций и скобки так, чтобы равенство стало верным для всех <i>а</i>, отличных от нуля.

Последняя цифра в записи натурального числа в 2016 раз меньше самого числа. Найдите все такие числа.

Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба?

В трёх клетках таблицы 3×3 стоят числа (см. рисунок). Требуется заполнить числами остальные клетки так, чтобы во всех строках, столбцах и главных диагоналях суммы чисел оказались равными. Докажите, что это можно сделать единственным способом, и заполните таблицу.<div align="center"><img src="/storage/problem-media/65897/problem_65897_img_2.gif"></div>

На координатной прямой отмечено несколько точек (больше двух). Каждая точка, кроме двух крайних, находится ровно посередине между какими-то двумя отмеченными. Могут ли все отрезки, внутри которых нет отмеченных точек, иметь различные длины?

Вчера Никита купил несколько ручек: чёрные – по 9 рублей за штуку и синие – по 4 рубля за штуку. Зайдя сегодня в тот же магазин, он обнаружил, что цены на ручки изменились: чёрные стали стоить 4 рубля за штуку, а синие – 9 рублей. Увидев такое, Никита сказал с досадой: "Покупай я те же ручки сегодня, сэкономил бы 49 рублей". Не ошибается ли он?

Поставьте в каждом из шести чисел по одной запятой так, чтобы равенство стало верным:  2016 + 2016 + 2016 + 2016 + 2016 = 46368.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка