Олимпиадные задачи из источника «2013 год» для 11 класса
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.). <div align="center"><img src="/storage/problem-media/116574/problem_116574_img_2.gif"></div>Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?
Сравните числа <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?
Пусть <i>I</i> – центр вписанной окружности неравнобедренного треугольника <i>ABC</i>. Через <i>A</i><sub>1</sub> обозначим середину дуги <i>BC</i> описанной окружности треугольника <i>ABC</i>, не содержащей точки <i>A</i>, а через <i>A</i><sub>2</sub> – середину дуги <i>BAC</i>. Перпендикуляр, опущенный из точки <i>A</i><sub>1</sub> на прямую <i>A</i><sub>2</sub><i>I</i>, пересекает прямую <i>BC</i> в точке <i>A'</i>. Аналогично определяются точки <i>B'</i> и <i>C'</i>.
а) Докажите, что точки <i>A'</i>, <i>B'</i>...
Дан правильный 4<i>n</i>-угольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>4<i>n</i></sub> площади <i>S</i>, причём <i>n</i> > 1. Найдите площадь четырёхугольника <i>A</i><sub>1</sub><i>A<sub>n</sub>A</i><sub><i>n </i>+1</sub><i>A</i><sub><i>n</i>+2</sub>.
Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось <i>Ox</i> в точках <i>A</i> и <i>M</i>, а ось <i>Oy</i> – в точке <i>C</i>. График другого пересекает ось <i>Ox</i> в точках <i>B</i> и <i>M</i>, а ось <i>Oy</i> – в точке <i>D</i>. (<i>O</i> – начало координат; точки расположены как на рисунке.) Докажите, что треугольники <i>AOC</i> и <i>BOD</i> подобны.<div align="center"><img src="/storage/problem-media/32897/problem_32897_img_2.gif"></div>