Олимпиадные задачи из источника «1999 год» для 10 класса - сложность 2-5 с решениями

Докажите, что первые цифры чисел вида 2<sup>2<sup>n</sup></sup> образуют непериодическую последовательность.

Решите в натуральных числах уравнение  (1 + <i>n<sup>k</sup></i>)<sup><i>l</i></sup> = 1 + <i>n<sup>m</sup></i>,  где  <i>l</i> > 1.

Раскраска вершин графа называется <i>правильной</i>, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в <i>k</i> цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех <i>k</i> цветов ровно по одному разу.

На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.

Сможет ли кузнечик попасть в лунку?

Грани правильного октаэдра раскрашены в белый и черный цвет. При этом любые две грани, имеющие общее ребро, покрашены в разные цвета.

Докажите, что для любой точки внутри октаэдра сумма расстояний до плоскостей белых граней равна сумме расстояний до плоскостей черных граней.

<i>a, b, c</i> – стороны треугольника. Докажите неравенство   <img align="middle" src="/storage/problem-media/105065/problem_105065_img_2.gif">

Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.

Найдите расстановку чисел, при которой полученная сумма наибольшая.

Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть из точки x либо в точку x/3<sup>1/2</sup>, либо в точку x/3<sup>1/2</sup>+(1-(1/3<sup>1/2</sup>)). На отрезке [0,1] выбрана точка a.

Докажите, что, начиная из любой точки, кузнечик может через несколько прыжков оказаться на расстоянии меньше 1/100 от точки a.

Найдите все такие пары натуральных чисел <i>x, y</i>, что числа  <i>x</i>³ + <i>y</i>  и  <i>y</i>³ + <i>x</i>  делятся на  <i>x</i>² + <i>y</i>².

В соревнованиях по <i>n</i>-борью участвуют 2<sup><i>n</i></sup> человек. Для каждого спортсмена известна его сила в каждом из видов программы. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в <i>n</i>-м виде программы не будет определен победитель. Назовем спортсмена <i>возможным победителем</i>, если можно так расставить виды спорта в программе, что он станет победителем.

  а) Докажите, что может так случиться, что хотя бы половина спортсменов является возможными победителями.

  б) Докажите, что число возможных по...

Найдите все такие целые положительные k, что число

1...12...2-2...2 является квадратом целого числа. (В первом слагаемом (уменьшаемом) всего 2000 цифр, из которых на последних местах стоят цифры "2" в количестве k штук, а остальные цифры - "1"; второе слагаемое (вычитаемое) состоит из 1001 поряд стоящих цифр "2")

Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?

2<i>n</i> радиусов разделили круг на 2<i>n</i> равных секторов: <i>n</i> синих и <i>n</i> красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до <i>n</i>. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до <i>n</i>.

Про действительные числа <i>a, b, c</i> известно, что  (<i>a + b + c</i>)<i>c</i> < 0.  Докажите, что  <i>b</i>² – 4<i>ac</i> > 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка