Олимпиадные задачи из источника «1963 год» для 11 класса

Доказать, что на сфере нельзя так расположить три дуги больших окружностей в300<sup><tt>o</tt></sup>каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов. <i>Примечание</i>: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.

Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.

Доказать, что не существует попарно различных натуральных чисел <i>x, y, z, t</i>, для которых было бы справедливо соотношение  <i>x<sup>x</sup> + y<sup>y</sup> = z<sup>z</sup> + t<sup>t</sup></i>.

Из центра правильного 25-угольника проведены векторы во все его вершины.

Как надо выбрать несколько векторов из этих 25, чтобы их сумма имела наибольшую длину?

Дан произвольный треугольник<i>ABC</i>и точка<i>X</i>вне его.<i>AM</i>,<i>BN</i>,<i>CQ</i>— медианы треугольника<i>ABC</i>. Доказать, что площадь одного из треугольников<i>XAM</i>,<i>XBN</i>,<i>XCQ</i>равна сумме площадей двух других.

Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую полученную точку деления проведены две плоскости, параллельные соответственно двум граням тетраэдра, не проходящим через эту точку. На сколько частей построенные плоскости разбивают тетраэдр?

Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.

Доказать, что сумма всех таких чисел делится на 9.

Дана система из 25 различных отрезков с общим началом в данной точке <i>A</i> и с концами на прямой <i>l</i>, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

Положительные числа<i>x</i>,<i>y</i>,<i>z</i>обладают тем свойством, что<div align="CENTER"> <i>arctg</i> <i>x</i> + <i>arctg</i> <i>y</i> + <i>arctg</i> <i>z</i> < $\displaystyle \pi$. </div>Доказать, что сумма этих чисел больше их произведения.

Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером<i>m</i>×<i>n</i>клеток?

Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший30<sup><tt>o</tt></sup>. Доказать.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка