Олимпиадные задачи из источника «Международная Математическая Олимпиада» - сложность 2-3 с решениями
Международная Математическая Олимпиада
НазадПусть $x_1 \le \dots \le x_n$. Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.
Дан описанный четырёхугольник <i>ABCD, P, Q</i> и <i>R</i> – основания перпендикуляров, опущенных из вершины <i>D</i> на прямые <i>BC, CA, AB</i> соответственно. Докажите, что биссектрисы углов <i>ABC, ADC</i> и диагональ <i>AC</i> пересекаются в одной точке тогда и только тогда, когда <i>|PQ| = |QR|</i>.
Найдите все такие натуральные (<i>a, b</i>), что <i>a</i><sup>2</sup> делится на натуральное число 2<i>ab</i><sup>2</sup> – <i>b</i><sup>3</sup> + 1.
Дано 101-элементное подмножество <i>A</i> множества <i>S</i> = {1, 2, ..., 1000000}.
Докажите, что для некоторых <i>t</i><sub>1</sub>, ..., <i>t</i><sub>100</sub> из <i>S</i> множества <i>A<sub>j</sub></i> = {<i>x + t<sub>j</sub></i> | <i>x</i> ∈ <i>A; j</i> = 1, ..., 100} попарно не пересекаются.
<i>a</i> и <i>b</i> – натуральные числа. Покажите, что если 4<i>ab</i> – 1 делит (4<i>a</i>² – 1)², то <i>a = b</i>.
Пусть <i>P</i>(<i>x</i>) – многочлен степени <i>n</i> > 1 с целыми коэффициентами, <i>k</i> – произвольное натуральное число. Рассмотрим многочлен
<i>Q<sub>k</sub></i>(<i>x</i>) = <i>P</i>(<i>P</i>(...<i>P</i>(<i>P</i>(<i>x</i>))...)) (<i>P</i> применён <i>k</i> раз). Докажите, что существует не более <i>n</i> целых чисел <i>t</i>, при которых <i>Q<sub>k</sub></i>(<i>t</i>) = <i>t</i>.
Найдите все такие пары (<i>x, y</i>) целых чисел, что 1 + 2<i><sup>x</sup></i> + 2<sup>2<i>x</i>+1</sup> = <i>y</i>².
Точка<i>I</i>– центр вписанной окружности треугольника<i>ABC</i>. Внутри треугольника выбрана точка<i>P</i>такая, что <center> <font face="Symbol">Ð</font><i>PBA</i> + <font face="Symbol">Ð</font><i>PCA</i> = <font face="Symbol">Ð</font><i>PBC</i> + <font face="Symbol">Ð</font><i>PCB.</i></center> Докажите, что<i>AP</i>≥<i>AI</i>, причём равенство выполняется тогда и только тогда, когда<i>P</i>совпадает с<i>I</i>.