Олимпиадные задачи из источника «47 Международная Математическая Олимпиада (2006 год)»

Пусть <i>P</i>(<i>x</i>) – многочлен степени  <i>n</i> > 1  с целыми коэффициентами, <i>k</i> – произвольное натуральное число. Рассмотрим многочлен

<i>Q<sub>k</sub></i>(<i>x</i>) = <i>P</i>(<i>P</i>(...<i>P</i>(<i>P</i>(<i>x</i>))...))  (<i>P</i> применён <i>k</i> раз). Докажите, что существует не более <i>n</i> целых чисел <i>t</i>, при которых  <i>Q<sub>k</sub></i>(<i>t</i>) = <i>t</i>.

Найдите все такие пары  (<i>x, y</i>)  целых чисел, что  1 + 2<i><sup>x</sup></i> + 2<sup>2<i>x</i>+1</sup> = <i>y</i>².

Определите наименьшее действительное число <i>M</i>, при котором неравенство   |<i>ab</i>(<i>a</i>² – <i>b</i>²) + <i>bc</i>(<i>b</i>² – <i>c</i>²) + <i>ca</i>(<i>c</i>² – <i>a</i>²)| ≤ <i>M</i>(<i>a</i>² + <i>b</i>² + <i>c</i>²)²   выполняется для любых действительных чисел <i>a, b, c</i>.

Диагональ правильного 2006-угольника <i>P</i> называется <i>хорошей</i>, если её концы делят границу <i>P</i> на две части, каждая из которых содержит нечётное число сторон. Стороны <i>P</i> также называются хорошими. Пусть <i>P</i> разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри <i>P</i>. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Точка<i>I</i>– центр вписанной окружности треугольника<i>ABC</i>. Внутри треугольника выбрана точка<i>P</i>такая, что <center> <font face="Symbol">Ð</font><i>PBA</i> + <font face="Symbol">Ð</font><i>PCA</i> = <font face="Symbol">Ð</font><i>PBC</i> + <font face="Symbol">Ð</font><i>PCB.</i></center> Докажите, что<i>AP</i>≥<i>AI</i>, причём равенство выполняется тогда и только тогда, когда<i>P</i>совпадает с<i>I</i>.

Каждой стороне<i>b</i>выпуклого многоугольника<i>P</i>поставлена в соответствие наибольшая из площадей треугольников, содержащихся в<i>P</i>, одна из сторон которых совпадает с<i>b</i>. Докажите, что сумма площадей, соответствующих всем сторонам<i>P</i>, не меньше удвоенной площади многоугольника<i>P</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка