Олимпиадные задачи из источника «Белорусские республиканские математические олимпиады» для 11 класса - сложность 2 с решениями

Найти такое трёхзначное число <i>A</i>², являющееся точным квадратом, что произведение его цифр равно  <i>A</i> – 1.

Найти все действительные решения уравнения<i> x<sup>2</sup>+</i>2<i>x sin xy+</i>1<i>=</i>0.

Среди комплексных чисел <i> p </i>, удовлетворяющих условию  |<i>p</i> – 25<i>i</i>| ≤ 15,  найти число с наименьшим аргументом.

Делится ли многочлен  1 + <i>x</i><sup>4</sup> + <i>x</i><sup>8</sup> + ... + <i>x</i><sup>4<i>k</i></sup>  на многочлен  1 + <i>x</i>² + <i>x</i><sup>4</sup> + ... + <i>x</i><sup>2<i>k</i></sup>?

Доказать, что не существует многогранника, имеющего 7 рёбер.

Существуют ли в пространстве 4 точки<i> A,B,C,D </i>такие, что<i> AB=CD=8 </i>см;<i> AC=BD=10 </i>см;<i> AB+BC=13 </i>см?

В данный прямоугольный треугольник вписать прямоугольник наибольшей площади так, чтобы все вершины прямоугольника лежали на сторонах треугольника.

Внутри правильного <i>n</i>-угольника со стороной <i>a</i> вписано <i>n</i> равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов.

Решить уравнение<i> 2-log<sub> sin x</sub> cos x=log<sub> cos x</sub> sin x. </i>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка