Олимпиадные задачи из источника «1980 год» - сложность 3 с решениями

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

На хорде <i>AB</i> окружности <i>S</i> с центром в точке <i>O</i> взята точка <i>C</i>. <i>D</i> — вторая точка пересечения окружности <i>S</i> с окружностью, описанной около треугольника <i>ACO</i>. Докажите, что <i>CD</i> = <i>CB</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка