Олимпиадные задачи из источника «1971 год» - сложность 2 с решениями

  а) Докажите, что в таблице <div align="center"><img src="/storage/problem-media/73633/problem_73633_img_2.gif"></div>где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.   б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?

Какому условию должны удовлетворять коэффициенты <i>a, b, c</i> уравнения  <i>x</i>³ + <i>ax</i>² + <i>bx + c</i>,  чтобы три его корня составляли арифметическую прогрессию?

Каждое неотрицательное целое число представимо, причём единственным образом, в виде   <img align="absmiddle" src="/storage/problem-media/73613/problem_73613_img_2.gif">   где <i>x</i> и <i>y</i> – целые неотрицательные числа. Докажите это.

Многочлен <i>p</i> и число <i>a</i> таковы, что для любого числа <i>x</i> верно равенство  <i>p</i>(<i>x</i>) = <i>p</i>(<i>a – x</i>).

Докажите, что <i>p</i>(<i>x</i>) можно представить в виде многочлена от  (<i>x</i> – <sup><i>a</i></sup>/<sub>2</sub>)².

На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы

  а) ровно 4 клетки?   б) ровно 5 клеток?   в) все 8 клеток?

Докажите, что для любого нечётного натурального числа <i>a</i> существует такое натуральное число <i>b</i>, что  2<sup><i>b</i></sup> – 1  делится на <i>a</i>.

На доске была начерчена трапеция, в ней была проведена средняя линия <i>EF</i> и опущен перпендикуляр <i>OK</i> из точки <i>O</i> пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам <i>EF</i> и <i>OK</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка