Олимпиадные задачи из источника «глава 11. Задачи на максимум и минимум» для 4-8 класса - сложность 4-5 с решениями
а) Докажите, что среди всех<i>n</i>-угольников, вписанных в данную окружность, наибольшую площадь имеет правильный<i>n</i>-угольник. б) Докажите, что среди всех<i>n</i>-угольников, вписанных в данную окружность, наибольший периметр имеет правильный<i>n</i>-угольник.
а) Докажите, что среди всех<i>n</i>-угольников, описанных около данной окружности, наименьшую площадь имеет правильный<i>n</i>-угольник. б) Докажите, что среди всех<i>n</i>-угольников, описанных около данной окружности, наименьший периметр имеет правильный<i>n</i>-угольник.
Дан треугольник<i>ABC</i>. Найдите внутри его точку <i>O</i>, для которой сумма длин отрезков<i>OA</i>,<i>OB</i>,<i>OC</i>минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше120<sup><tt>o</tt></sup>.)
Какую наименьшую ширину должна иметь бесконечная полоса бумаги, из которой можно вырезать любой треугольник площадью 1?