Олимпиадные задачи из источника «глава 11. Задачи на максимум и минимум» для 11 класса - сложность 4-5 с решениями
Найдите внутри треугольника<i>ABC</i>точку <i>O</i>, для которой сумма квадратов расстояний от нее до сторон треугольника минимальна.
Дан треугольник со сторонами <i>a, b</i> и <i>c</i>, причём <i>a ≥ b ≥ c</i>; <i>x, y</i> и <i>z</i> – углы некоторого другого треугольника. Докажите, что <div align="CENTER"><i>bc + ca – ab < bc</i> cos <i>x + ca</i> cos <i>y + ab</i> cos <i>z</i> ≤ ½ (<i>a</i>² + <i>b</i>² + <i>c</i>²). </div>
Пусть <i>a, b</i> и <i>c</i> – длины сторон треугольника площади <i>S</i>; α<sub>1</sub>, β<sub>1</sub> и γ<sub>1</sub> – углы некоторого другого треугольника. Докажите, что
<i>a</i>² ctg α<sub>1</sub> + <i>b</i>² ctg β<sub>1</sub> + <i>c</i>² ctg γ<sub>1</sub> ≥ 4<i>S</i>, причём равенство достигается, только когда рассматриваемые треугольники подобны.