Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» для 5 класса
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
НазадКак при помощи чашечных весов без гирь разделить 24 кг гвоздей на две части — 9 и 15 кг?
Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он?
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?
В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?
Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?
а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?
На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно диагонали.
Докажите, что одна из шашек расположена на диагонали.
а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
б) Что можно сказать в случае десятиугольника?
Можно ли доску размером 5×5 заполнить доминошками размером 1×2?
Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
Ученица 5 класса Катя и несколько её одноклассников встали в круг, взявшись за руки. Оказалось, что каждый держит за руки либо двух мальчиков, либо двух девочек. Если в кругу стоит пять мальчиков, то сколько там стоит девочек?
По дороге цепочкой ползут три черепахи. "За мной ползут две черепахи" - говорит первая. "За мной ползет одна черепаха, и передо мной ползет одна черепаха" - говорит вторая. "Передо мной ползут две черепахи, и за мной ползет одна черепаха" - говорит третья. Как такое может быть?
Сын отца профессора разговаривает с отцом сына профессора, причем сам профессор в разговоре не участвует. Может ли такое быть?
Учитель рисует на листке бумаги несколько кружков и
спрашивает одного ученика: Сколько здесь кружков?''. Семь''-
отвечает ученик. Правильно. Так сколько здесь кружков?'' - опять спрашивает учитель другого ученика. Пять'' - отвечает
тот. ``Правильно'' - снова говорит учитель. Так сколько же
кружков он нарисовал на листке?
Петин кот перед дождем всегда чихает. Сегодня он чихнул. ``Значит, будет дождь'' - думает Петя. Прав ли он?
В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?