Олимпиадные задачи по теме «Принцип Дирихле» для 10 класса - сложность 2-3 с решениями
Принцип Дирихле
НазадНа шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга.
Докажите, что на ту же доску можно поставить ещё одного коня с сохранением этого свойства.
Даны <i>n</i> + 1 попарно различных натуральных чисел, меньших 2<i>n</i> (<i>n</i> > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?
Длина прямоугольного участка равна 4 метра, а ширина – 1 метр.
Можно ли посадить на нём три дерева так, чтобы расстояние между любыми двумя деревьями было не меньше чем 2,5 метра?
Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру. У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых <i>N</i> позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем <i>N</i> он гарантированно сможет это сделать?
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
Петя выбрал натуральное число <i>a</i> > 1 и выписал на доску пятнадцать чисел 1 + <i>a</i>, 1 + <i>a</i>², 1 + <i>a</i>³, ..., 1 + <i>a</i><sup>15</sup>. Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?
На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?
Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?
На шахматной доске расставили <i>n</i> белых и <i>n</i> чёрных ладей так, чтобы ладьи разного цвета не били друг друга. Найдите наибольшее возможное значение <i>n</i>.
На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека <i>объявляются</i> друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?
В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма <i>k</i> наибольших чисел равна <i>a</i>, а в каждом столбце таблицы сумма <i>k</i> наибольших чисел равна <i>b</i>.
а) Докажите, что если <i>k</i> = 2, то <i>a = b</i>.
б) В случае <i>k</i> = 3 приведите пример такой таблицы, для которой <i>a ≠ b</i>.
Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?
В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём <i>n</i> ≠ <i>m</i>. Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.
На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Докажите, что у семи из них есть общий дедушка.
В течение92дней авиакомпания ежедневно выполняла по десять рейсов. За день каждый самолет выполнял не более одного рейса. Известно, что для любой пары дней найдется один и только один самолет, летавший в оба эти дня. Докажите, что есть самолет, летавший каждый день.
Какое наименьшее количество трехклеточных уголков можно разместить в квадрате8<i>× </i>8так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?
По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?
В бесконечной возрастающей последовательности натуральных чисел каждое делится хотя бы на одно из чисел 1005 и 1006, но ни одно не делится на 97. Кроме того, каждые два соседних числа отличаются не более чем на <i>k</i>. При каком наименьшем <i>k</i> такое возможно?
В некоторых клетках доски 10×10 поставили <i>k</i> ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем <i>k</i> может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.
25 мальчиков и несколько девочек собрались на вечеринке и обнаружили забавную закономерность. Если выбрать любую группу не меньше чем из 10 мальчиков, а потом добавить к ним всех девочек, знакомых хотя бы с одним из этих мальчиков, то в получившейся группе число мальчиков окажется на 1 меньше, чем число девочек. Докажите, что некоторая девочка знакома не менее чем с 16 мальчиками.
В 25 коробках лежат шарики нескольких цветов. Известно, что при любом <i>k</i> (1 ≤ <i>k</i> ≤ 25) в любых <i>k</i> коробках лежат шарики ровно <i>k</i> + 1 различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.
а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида?
б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида?
В каждой клетке шахматной доски сидят по два таракана. В некоторый момент времени каждый таракан переползает на соседнюю (по стороне) клетку, причём тараканы, сидевшие в одной клетке, переползают в разные клетки. Какое наибольшее количество клеток доски может после этого остаться свободным?