Олимпиадные задачи по теме «Инварианты и полуинварианты» для 3-7 класса - сложность 3 с решениями

Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002?

Даны числа 1, 2, ..., <i>N</i>, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких <i>N</i> всегда можно сделать все числа белыми?

У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.

На доске записано целое число. Его последняя цифра запоминается, затем стирается и, умноженная на 5, прибавляется к тому числу, что осталось на доске после стирания. Первоначально было записано число 7<sup>1998</sup>. Может ли после применения нескольких таких операций получиться число 1998<sup>7</sup>?

Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй – на треть, третий – на четверть, четвёртый – на &frac15;, пятый – на &frac18;, шестой – на <sup>1</sup>/<sub>9</sub>, и седьмой – на <sup>1</sup>/<sub>10</sub>. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным   а) на <sup>1</sup>/<sub>12</sub>;   б) на &frac16;?

На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?

Петя закрасил одну клетку прямоугольника. Саша может закрашивать другие клетки этого прямоугольника по следующему правилу: можно красить любую клетку, у которой нечётное число закрашенных соседей (по стороне). Сможет ли Саша закрасить все клетки прямоугольника (независимо от того, какую клетку выбрал Петя), если размеры прямоугольника а) 8×9 клеток? б) 8×10 клеток?

На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать? <img src="/storage/problem-media/103786/problem_103786_img_2.gif">

На отрезке  [<i>a, b</i>]  отмечено несколько синих и красных точек. Две точки одного цвета, между которыми нет отмеченных точек, разрешается стереть. Разрешается также отметить две точки одного цвета, красные или синие, так, чтобы между ними не было других отмеченных точек. Первоначально было отмечено две точки: <i>a</i> – синяя и <i>b</i> – красная. Можно ли сделать несколько разрешенных пребразований так, чтобы в результате было опять две отмеченные точки: <i>a</i> – красная и <i>b</i> – синяя?

Круг разбит на <i>n</i> секторов, в некоторых секторах стоят фишки – всего фишек  <i>n</i> + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

В наборе имеются гири массой 1 г, 2 г, 4 г, ... (все степени числа 2), причём среди гирь могут быть одинаковые. На две чашки весов положили гири так, чтобы наступило равновесие. Известно, что на левой чашке все гири различны. Докажите, что на правой чашке не меньше гирь, чем на левой.

Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

В правильном десятиугольнике проведены все диагонали. Возле каждой вершины и возле каждой точки пересечения диагоналей поставлено число +1 (рассматриваются только сами диагонали, а не их продолжения). Разрешается одновременно изменить все знаки у чисел, стоящих на одной стороне или на одной диагонали. Можно ли с помощью нескольких таких операций изменить все знаки на противоположные?

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.

Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?

В центре квадратного пирога находится изюминка. От пирога можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. Можно ли отрезать изюминку?

Задано несколько красных и несколько синих точек. Некоторые из них соединены отрезками. Назовём точку «особой», если более половины из соединённых с ней точек имеют цвет, отличный от её цвета. Если есть хотя бы одна особая точка, то выбираем любую особую точку и перекрашиваем в другой цвет. Докажите, что через конечное число шагов не останется ни одной особой точки.

Дано<i>n</i>фишек нескольких цветов, причём фишек каждого цвета не<nobr>более <i>n</i>/2.</nobr>Докажите, что их можно расставить на окружности так, чтобы никакие две фишки одинакового цвета не стояли рядом.

<img src="/storage/problem-media/73546/problem_73546_img_2.gif" width="191" height="185" vspace="10" hspace="20" align="right">а) На 44 деревьях, расположенных по окружности, сидели 44 весёлых чижа (на каждом дереве по чижу). Время от времени два чижа одновременно перелетают на соседние деревья в противоположных направлениях (один – по часовой стрелке, другой – против). Докажите, что чижи никогда не соберутся на одном дереве.

б) А если чижей и деревьев <i>n</i>?

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?

На клетчатой доске 10×10 в одной из клеток сидит бактерия. За один ход бактерия сдвигается в соседнюю по стороне клетку и делится на две бактерии (обе остаются в той же клетке). Затем снова одна из сидящих на доске бактерий сдвигается в соседнюю по стороне клетку и делится на две, и так далее. Может ли после нескольких таких ходов во всех клетках оказаться поровну бактерий?

На конкурсе "А ну-ка, чудища!" стоят в ряд 15 драконов. У соседей число голов отличается на 1. Если у дракона больше голов, чем у обоих его соседей, его считают хитрым, если меньше, чем у обоих соседей, – сильным, остальных (в том числе стоящих с краю) считают обычными. В ряду есть ровно четыре хитрых дракона – с 4, 6, 7 и 7 головами и ровно три сильных – с 3, 3 и 6 головами. У первого и последнего драконов голов поровну.

  а) Приведите пример того, как такое могло быть.

  б) Докажите, что число голов у первого дракона во всех примерах одно и то же.

В клетках квадратной таблицы 4×4 расставлены знаки  +  и  – ,   как показано на рисунке. <div align="center"><img src="/storage/problem-media/60645/problem_60645_img_2.gif"></div>Разрешается одновременно менять знак во всех клетках, расположенных в одной строке, в одном столбце или на прямой, параллельной какой-нибудь диагонали (в частности, можно менять знак в любой угловой клетке). Докажите, что, сколько бы мы ни производили таких перемен знака, нам не удастся получить таблицу из одних плюсов.

Круг разделен на 6 секторов и в них по часовой стрелке расставлены числа: 1, 0, 1, 0, 0, 0. Разрешается прибавить по единице к числам в любых двух соседних секторах. Можно ли такими операциями добиться того, чтобы все числа в секторах были одинаковыми?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка