Олимпиадные задачи по теме «Алгебраические методы» для 9 класса - сложность 2 с решениями
Алгебраические методы
НазадКуб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?
Могут ли все корни уравнений <i>x</i>² – <i>px + q</i> = 0 и <i>x</i>² – (<i>p</i> + 1)<i>x + q</i> = 0 оказаться целыми числами, если:
а) <i>q</i> > 0;
б) <i>q</i> < 0?
Про группу из пяти человек известно, что: Алеша на 1 год старше Алексеева,
Боря на 2 года старше Борисова,
Вася на 3 года старше Васильева,
Гриша на 4 года старше Григорьева,
а еще в этой группе есть Дима и Дмитриев.Кто старше и на сколько: Дима или Дмитриев?
На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?
По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.
Для чисел <i>а, b</i> и <i>с</i>, отличных от нуля, выполняется равенство: <i>a</i>²(<i>b + c – a</i>) = <i>b</i>²(<i>c + a – b</i>) = <i>c</i>²(<i>a + b – c</i>). Следует ли из этого, что <i>а = b = c</i>?
В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?
На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во <i>владения</i> этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?
Найдите значение выражения <img align="absmiddle" src="/storage/problem-media/116618/problem_116618_img_2.gif"> .
Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.
За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"?
Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа <i>A</i> при помощи таких операций можно получить число <i>A</i> + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)
Вначале на плоскости были отмечены три различные точки. Каждую минуту выбирались некоторые три из отмеченных точек – обозначим их <i>A, B</i> и <i>C</i>, после чего на плоскости отмечалась точка <i>D</i>, симметричная <i>A</i> относительно серединного перпендикуляра к <i>BC</i>. Через сутки оказалось, что среди отмеченных точек нашлись три различные точки, лежащие на одной прямой. Докажите, что три исходных точки также лежали на одной прямой.
Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?
Сколько существует таких натуральных <i>n</i>, не превосходящих 2012, что сумма 1<sup><i>n</i></sup> + 2<sup><i>n</i></sup> + 3<sup><i>n</i></sup> + 4<sup><i>n</i></sup> оканчивается на 0?
Имеется 200 гирек массами 1, 2, ..., 200 грамм. Их разложили на две чаши весов по 100 гирек на каждую, и весы оказались в равновесии. На каждой гирьке записали, сколько гирек на противоположной чаше легче неё. Докажите, что сумма чисел, записанных на гирьках левой чаши, равна сумме чисел, записанных на гирьках правой чаши.
В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?
На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?
Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.
По кругу лежат 100 белых камней. Дано целое число <i>k</i> в пределах от 1 до 50. За ход разрешается выбрать любые <i>k</i> подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в чёрный цвет. При каких <i>k</i> можно за несколько таких ходов покрасить все 100 камней в чёрный цвет?
Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?
Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?