Олимпиадные задачи по теме «Алгебраические методы» для 10 класса - сложность 3-4 с решениями

Фигура <i>мамонт</i> бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?

Даны  <i>n</i> + 1  попарно различных натуральных чисел, меньших 2<i>n</i>  (<i>n</i> > 1).

Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.

Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.

Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в <sup>1</sup>/<sub>17</sub> всех экскурсий.

Изначально на доске были написаны одночленs  1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>.  Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены  <i>S</i><sub>1</sub> = 1 + <i>x,  S</i><sub>2</sub> = 1 + <i>x + x</i>²,  <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>,  ...,  <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>.  Докажите...

Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их <i>a</i> и <i>b</i>) и заменить их на числа  <i>a</i>² – 2011<i>b</i>²  и <i>ab</i>. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?

На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали <i>k</i> точек и построили выпуклый <i>k</i>-угольник с вершинами

в выбранных точках. При каком наибольшем <i>k</i> могло оказаться, что у этого многоугольника нет параллельных сторон?

У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него в итоге не оказалось

100 кучек по одному камешку. Докажите, что

  а) в какой-то момент в каких-то 30 кучках было в сумме ровно 60 камешков;

  б) в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;

  в) Костя мог действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков.

У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение  <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>)  имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?

На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.

Дан квадрат <i>n</i>×<i>n</i>. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких <i>n</i> за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?

Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить  12345 + 6 + 789 = 13140).  С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.

На съезд собрались 5000 кинолюбителей, каждый видел хотя бы один фильм. Их делят на секции двух типов: либо обсуждение фильма, который все члены секции видели, либо каждый рассказывает о виденном фильме, который больше никто в секции не видел. Докажите, что всех можно разбить ровно на 100 секций. (Секции из одного человека разрешаются: он пишет отзыв о виденном фильме.)

На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.

Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?

  Назовём натуральное число <i>хорошим</i>, если все его цифры ненулевые. Хорошее число назовём <i>особым</i>, если в нём хотя бы <i>k</i> разрядов и цифры идут в порядке строгого возрастания (слева направо).   Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем <i>k</i> можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?

В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.

По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.

В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма <i>k</i> наибольших чисел равна <i>a</i>, а в каждом столбце таблицы сумма <i>k</i> наибольших чисел равна <i>b</i>.

  а) Докажите, что если  <i>k</i> = 2,  то  <i>a = b</i>.

  б) В случае  <i>k</i> = 3  приведите пример такой таблицы, для которой  <i>a ≠ b</i>.

На доске выписано  (<i>n</i> – 1)<i>n</i>  выражений:   <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>,  <i>x</i><sub>1</sub> – <i>x</i><sub>3</sub>,  ...,  <i>x</i><sub>1</sub> – <i>x<sub>n</sub></i>,  <i>x</i><sub>2</sub> – <i>x</i><sub>1</sub>,  <i>x</i><sub>2</sub> – <i>x</i><sub>3</sub>,  ...,  <i>x</i><sub>2</sub> – <i>x<sub>n</sub></i>,  ...,  <i>x<sub>n</sub></i> – <i>x</i><sub><i>n</i>–1</sub>,   где  <i>n</i&...

За круглым столом заседают <i>N</i> рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?

(Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём  <i>n</i> ≠ <i>m</i>.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.

  а) Могут ли они гарантировать результат более 500?

  б) Могут ли они гарантировать результат не менее 999?

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.   а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

На бесцветной плоскости покрасили три произвольные точки: одну – в красный цвет, другую – в синий, третью –` в жёлтый. Каждым ходом выбирают на плоскости любые две точки двух из этих цветов и окрашивают еще одну точку в оставшийся цвет так, чтобы эти три точки образовали равносторонний треугольник, в котором цвета вершин идут в порядке "красный, синий, жёлтый" (по часовой стрелке). При этом разрешается красить и уже окрашенную точку плоскости (считаем, что точка может иметь одновременно несколько цветов). Докажите, что сколько бы ходов ни было сделано, все точки одного цвета будут лежать на одной прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка