Олимпиадные задачи по теме «Логика и теория множеств» для 2-5 класса - сложность 2 с решениями
Карлсон открыл школу, и 1 сентября во всех трёх первых классах было по три урока: Курощение, Низведение и Дуракаваляние. Один и тот же предмет в двух классах одновременно идти не может. Курощение в 1Б было первым уроком. Учитель Дуракаваляния похвалил учеников 1Б: "У вас получается еще лучше, чем у 1А". Низведение на втором уроке было не в 1А. В каком классе валяли дурака на последнем уроке?
Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?
В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.
Известно, что среди 63 монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за три взвешивания на чашечных весах без гирь определить 7 настоящих монет?
Некоторые жители <i>Острова Разноцветных Лягушек</i> говорят только правду, а остальные всегда лгут. Трое островитян сказали так:
Бре: На нашем острове нет синих лягушек.
Ке: Бре лгун. Он же сам синяя лягушка!
Кекс: Конечно, Бре лгун. Но он красная лягушка.
Водятся ли на этом острове синие лягушки?
Решите ребус: ЛЕТО + ЛЕС = 2011.
13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?
Вот ребус довольно простой:
ЭХ вчетверо больше, чем ОЙ.
АЙ вчетверо больше, чем ОХ.
Найди сумму всех четырёх.
На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?
Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать?
Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?
Четверо детей сказали друг о друге так.
<i>Маша</i>: Задачу решили трое: Саша, Наташа и Гриша.
<i>Саша</i>: Задачу не решили трое: Маша, Наташа и Гриша.
<i>Наташа</i>: Маша и Саша солгали.
<i>Гриша</i>: Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?
На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед.
И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?
В равенстве ТИХО + ТИГР = СПИТ замените одинаковые буквы одинаковыми цифрами, а разные буквы – разными цифрами так, чтобы ТИГР был бы как можно меньше (нулей среди цифр нет).
Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены?
Какие цифры могут стоять на месте букв в примере <i>AB·C = DE</i>, если различными буквами обозначены различные цифры и слева направо цифры записаны в порядке возрастания?
Каждый из четырех инопланетян умеет писать только две буквы. Кра умеет писать<i> <img src="/storage/problem-media/111233/problem_111233_img_2.gif"> </i>и<i> Δ </i>; Кре – буквы<i> <img src="/storage/problem-media/111233/problem_111233_img_3.gif"> </i>и<i> <img src="/storage/problem-media/111233/problem_111233_img_2.gif"> </i>; Кру – буквы<i> <img src="/storage/problem-media/111233/problem_111233_img_3.gif"> </i>и<i> <img src="/storage/problem-media/111233/problem_111233_img_4.gif"> </i>, Крю – буквы<i> Δ </i>и<i> <img src="/storage/problem-media/111233/problem_111233_img_4.gif"> </i>. Они оставили...
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама – за 2, малыш – за 5, а бабушка – за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя.)
Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?
12 кузнецов должны подковать 15 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратить на работу? (Учтите, лошадь не может стоять на двух ногах.)
Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка — в 5 и 8 л. Попробуйте, пользуясь этими бочонками а) разделить квас на две части — 3 и 9 л; б) разделить квас на две равные части.
Имеются двое песочных часов — на 7 минут и на 11 минут. Яйцо варится 15 минут. Как отмерить это время при помощи имеющихся часов?
Из спичек составлены три неверных равенства (см. рисунок). <div align="center"><img src="/storage/problem-media/88248/problem_88248_img_2.gif"></div>Переставьте в каждом ряду по одной спичке так, чтобы все равенства стали верными. Можно смещать части формулы без изменения рисунка.