Олимпиадные задачи по теме «Теория множеств» для 7 класса - сложность 2 с решениями

Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на сотом месте?

По данным опроса, проведенного в 7 "Е" классе, выяснилось, что 20% учеников, интересующихся математикой, интересуются еще и физикой, а 25% учеников, интересующихся физикой, интересуются также и математикой. И только Пете с Васей не интересен ни один из этих предметов. Сколько человек в 7 "Е", если известно, что их больше 20, но меньше 30?

В группе из 50 ребят некоторые знают все буквы, кроме "р", которую просто пропускают при письме, а остальные знают все буквы, кроме "к", которую тоже пропускают. Однажды учитель попросил 10 учеников написать слово "кот", 18 других учеников – слово "рот", а остальных – слово "крот". При этом слова "кот" и "рот" оказались написанными по 15 раз. Сколько ребят написали своё слово верно?

На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?

Дима провёл социальный опрос и выяснил про жителей своего подъезда, что: 25 из них играют в шахматы, 30 были в Архангельске, 28 летали на самолете. Среди летавших на самолете 18 играют в шахматы и 17 были в Архангельске. 16 жителей играют в шахматы и были в Архангельске, притом среди них 15 еще и летали на самолете. От управдома Дима узнал, что всего в подъезде живет 45 человек. Не врет ли управдом?

В каждой комнате особняка стояли букеты цветов. Всего было 30 букетов роз, 20 – гвоздик и 10 – хризантем, причём, в каждой комнате стоял хотя бы один букет. При этом ровно в двух комнатах стояли одновременно и хризантемы, и гвоздики, ровно в трёх комнатах – и хризантемы, и розы, ровно в четырёх комнатах – и гвоздики, и розы. Могло ли в особняке быть 55 комнат?

В детский сад завезли карточки для обучения чтению: на некоторых написано "МА", на остальных – "НЯ". Каждый ребёнок взял три карточки и стал составлять из них слова. Оказалось, что слово "МАМА" могут сложить из своих карточек 20 детей, слово "НЯНЯ" – 30 детей, а слово "МАНЯ" – 40 детей. У скольких ребят все три карточки одинаковы?

В коридоре длиной 100 метров постелено 20 ковровых дорожек общей длины 1000 метров. Каково может быть наибольшее число незастеленных кусков (ширина дорожки равна ширине коридора)?

Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?

Петя собирается все 90 дней каникул провести в деревне и при этом каждый второй день (то есть через день) ходить купаться на озеро, каждый третий – ездить в магазин за продуктами, а каждый пятый день – решать задачи по математике. (В первый день Петя сделал и первое, и второе, и третье и очень устал.) Сколько будет у Пети "приятных" дней, когда нужно будет купаться, но не нужно ни ездить в магазин, ни решать задачи? Сколько "скучных", когда совсем не будет никаких дел?

Сколько существует несократимых дробей с числителем 2015, меньших чем <sup>1</sup>/<sub>2015</sub> и больших чем <sup>1</sup>/<sub>2016</sub>?

Лесник считал сосны в лесу. Он обошёл 5 кругов, изображённых на рисунке, и внутри каждого круга насчитал ровно 3 сосны.

Может ли быть, что лесник ни разу не ошибся? <div align="center"><img src="/storage/problem-media/64816/problem_64816_img_2.gif"></div>

Хозяйка испекла для гостей пирог. К ней может прийти либо 10, либо 11 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?

Антон, Артем и Вера решили вместе 100 задач по математике. Каждый из них решил 60 задач. Назовем задачу трудной, если ее решил только один человек, и легкой, если ее решили все трое. Насколько отличается количество трудных задач от количества легких?

У деда Мороза в мешке бесконечное число конфет, занумерованных натуральными числами. За минуту до Нового года он начинает дарить детям конфеты. Сначала он дарит детям конфету с номером 1. За полминуты до Нового года он дарит 2 конфеты с номерами 2 и 3, а конфету с номером 1 отбирает, за 15 секунд до Нового года он дарит 4 конфеты с номерами 4, 5, 6, 7, а 2 конфеты с номерами 2 и 3 отбирает, и т.д., за 1/2<sup>n</sup>долю минуты до Нового года дед Мороз дарит 2<sup>n</sup>конфет с номерами от 2<sup>n</sup>до 2<sup>n+1</sup>-1 и отбирает 2<sup>n-1</sup>конфет с номерами от 2<sup>n-1</sup>до 2<sup>n</sup>-1. Сколько конфет будет у деда Мороза и у детей в момент встречи Нового года?

В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

Трое сумасшедших маляров принялись красить пол каждый в свой цвет. Один успел закрасить красным 75% пола, другой зелёным – 70%, третий синим – 65%. Какая часть пола заведомо закрашена всеми тремя красками?

а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле? б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка