Олимпиадные задачи по теме «Теория графов» для 10 класса - сложность 2 с решениями

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?

В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?

25 мальчиков и несколько девочек собрались на вечеринке и обнаружили забавную закономерность. Если выбрать любую группу не меньше чем из 10 мальчиков, а потом добавить к ним всех девочек, знакомых хотя бы с одним из этих мальчиков, то в получившейся группе число мальчиков окажется на 1 меньше, чем число девочек. Докажите, что некоторая девочка знакома не менее чем с 16 мальчиками.

По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.

Докажите, что найдётся пара и не соседних чисел с таким же свойством.

Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

Тетрадный лист раскрасили в 23 цвета по клеткам. Пара цветов называется хорошей, если существует две соседние клетки, закрашенные этими цветами. Каково минимальное число хороших пар?

20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.

Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.

Двадцать городов соединены 172 авиалиниями.

Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

В городе <i>N</i> с каждой станции метро на любую другую можно проехать. Доказать, что одну из станций можно закрыть на ремонт без права проезда через неё так, чтобы с любой из оставшихся станций можно было по-прежнему проехать на любую другую.

<i>n</i> точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.

Доказать, что общее число отрезков равно  <i>n</i> – 1.

Можно ли провести в городе 10 автобусных маршрутов и установить на них остановки так, что какие бы 8 маршрутов ни были взяты, найдётся остановка, не лежащая ни на одном из них, а любые 9 маршрутов проходят через все остановки.

В клуб любителей гиперграфов в начале года записались $n$ попарно незнакомых школьников. За год клуб провёл $100$ заседаний, причём каждое заседание посетил хотя бы один школьник. Два школьника знакомились, если было хотя бы одно заседание, которое они оба посетили. В конце года оказалось, что количество знакомых у каждого школьника не меньше, чем количество заседаний, которые он посетил. Найдите минимальное значение $n$, при котором такое могло случиться.

В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город <i>A доступен</i> для города <i>B</i>, если из <i>B</i> можно долететь в <i>A</i>, возможно, с пересадками. Известно, что для любых двух городов <i>P</i> и <i>Q</i> существует город <i>R</i>, для которого и <i>P</i>, и <i>Q</i> доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил <i>n</i> билетов на каждый маршрут. Иванов и Петров выехали из города <i>A</i>. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе <i>B</i>. Петров некоторое время ездил по купленным билетам, оказался в городе <i>X</i> и не может из него выехать, не купив новый билет. Докажите, что <i>X</i> – это либо <i>A</i>, либо <i>B</i>

Имеется несколько юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявляет: "Я могу одновременно поженить всех брюнетов так, чтобы каждый из них женился на знакомой ему девушке!" Вторая сваха говорит: "А я могу устроить судьбу всех блондинок: каждая выйдет замуж за знакомого юношу!" Этот диалог услышал любитель математики, который сказал: "В таком случае можно сделать и то, и другое!" Прав ли он?

В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть больше

  а) 15;

  б) 20?

  в) Может ли в аналогичной задаче про квадрат <i>n×n</i> клеток получиться больше чем <sup><i>n</i>²</sup>/<sub>4</sub> частей (для  <i>n</i> > 8)?

В турнире участвуют 2<i>m</i> команд. В первом туре встретились некоторые <i>m</i> пар команд, во втором – другие <i>m</i> пар.

Докажите, что после этого можно выбрать <i>m</i> команд, никакие две из которых ещё не играли между собой.

Город имеет форму квадрата 5×5: <div align="CENTER"><img width="81" height="81" align="BOTTOM" border="0" src="/storage/problem-media/60632/problem_60632_img_2.gif"></div>Какую наименьшую длину может иметь маршрут, если нужно пройти по каждой улице этого города и вернуться в прежнее место? (По каждой улице можно проходить любое число раз.)

В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка