Олимпиадные задачи по теме «Геометрия» для 2-6 класса - сложность 1-2 с решениями

Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?

Для игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)

Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать семь таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?

Биссектрисы треугольника <i>ABC</i> пересекаются в точке <i>I</i>,  ∠<i>ABC</i> = 120°.  На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> отмечены соответственно точки <i>P</i> и <i>Q</i> так, что  <i>AP = CQ = AC</i>.  Докажите, что угол <i>PIQ</i> – прямой.

Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол. <div align="center"><img src="/storage/problem-media/117002/problem_117002_img_2.gif"></div>

На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.

Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?

В треугольнике <i>ABC</i> на стороне <i>AB</i> выбрана точка <i>K</i> и проведены биссектриса <i>KE</i> треугольника <i>AKC</i> и высота <i>KH</i> треугольника <i>BKC</i>. Оказалось, что угол <i>EKH</i> – прямой. Найдите <i>BC</i>, если  <i>HC</i> = 5.

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:

  а) за 5 или менее;

  б) за 4 или менее;

  в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>

Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.). <div align="center"><img src="/storage/problem-media/116959/problem_116959_img_2.gif"></div>Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?

Разрежьте данную фигуру на три одинаковые части.<div align="center"><img src="/storage/problem-media/116863/problem_116863_img_2.gif"></div>

Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.

Чему равна сторона квадрата, если площадь прямоугольника 54 м²?

Разрежьте фигуру, изображенную на рисунке, на три части так, чтобы в каждой из частей была снежинка и из этих частей можно было бы сложить квадрат.<div align="center"><img src="/storage/problem-media/116859/problem_116859_img_2.gif"></div>

Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?<div align="center"><img src="/storage/problem-media/116843/problem_116843_img_2.gif"></div>

На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?

Внутри угла <i>AOB</i>, равного 120°, проведены лучи <i>OC</i> и <i>OD</i> так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла <i>AOC</i>, указав все возможные варианты.

Покажите, как разрезать фигуру (см. рисунок) на четыре равные части по линиям сетки. <div align="center"><img src="/storage/problem-media/116790/problem_116790_img_2.gif"></div>

Требуется разрезать по клеточкам изображенную на рисунке фигуру на несколько равных частей. Сколько частей может получиться? <div align="center"><img src="/storage/problem-media/116787/problem_116787_img_2.gif"></div>

Квадратный лист размером 6×6 клеток сложили и вырезали из него часть так, как показано на рисунке. Затем этот лист развернули. Нарисуйте развёрнутый лист размером 6×6 клеток и покажите на рисунке сделанные вырезы.<div align="center"><img src="/storage/problem-media/116780/problem_116780_img_2.gif"></div>

Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). <div align="center"><img src="/storage/problem-media/116655/problem_116655_img_2.gif"></div>А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?

Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)

Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок).

Торт упакован в коробку с квадратным основанием. Высота коробки вдвое меньше стороны этого квадрата. Ленточкой длины 156 см можно перевязать коробку и сделать бантик сверху (как на рисунке слева). А чтобы перевязать её с точно таким же бантиком сбоку (как на рисунке справа), нужна ленточка длины 178 см. Найдите размеры коробки. <div align="center"><img src="/storage/problem-media/116606/problem_116606_img_2.gif"></div>

Разрежьте рамку (см. рис.) на 16 равных частей. <div align="center"><img src="/storage/problem-media/116603/problem_116603_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка