Олимпиадные задачи по теме «Аффинная геометрия» - сложность 2 с решениями

На стороне <i>BC</i> и на продолжении стороны <i>AB</i> за вершину <i>B</i> треугольника <i>ABC</i> расположены точки <i>M</i> и <i>K</i> соответственно, причём  <i>BM</i> : <i>MC</i> = 4 : 5  и  <i>BK</i> : <i>AB</i> = 1 : 5.  Прямая <i>KM</i> пересекает сторону <i>AC</i> в точке <i>N</i>. Найдите отношение  <i>CN</i> : <i>AN</i>.

Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) , dx.$$

В трапеции<i>ABCD</i>с основаниями<i>AD</i>и <i>BC</i>через точку <i>B</i>проведена прямая, параллельная стороне<i>CD</i>и пересекающая диагональ<i>AC</i>в точке <i>P</i>, а через точку <i>C</i> — прямая, параллельная стороне<i>AB</i>и пересекающая диагональ<i>BD</i>в точке <i>Q</i>. Докажите, что прямая<i>PQ</i>параллельна основаниям трапеции.

Дан треугольник<i>ABC</i>. Пусть <i>O</i> — точка пересечения его медиан, а <i>M</i>,<i>N</i>и <i>P</i> — точки сторон<i>AB</i>,<i>BC</i>и <i>CA</i>, делящие эти стороны в одинаковых отношениях (т. е.<i>AM</i>:<i>MB</i>=<i>BN</i>:<i>NC</i>=<i>CP</i>:<i>PA</i>=<i>p</i>:<i>q</i>). Докажите, что: а)<i>O</i> — точка пересечения медиан треугольника<i>MNP</i>; б)<i>O</i> — точка пересечения медиан треугольника, образованного прямыми<i>AN</i>,<i>BP</i>и <i>CM</i>.

На сторонах<i>AB</i>,<i>BC</i>и <i>CD</i>параллелограмма<i>ABCD</i>взяты точки <i>K</i>,<i>L</i>и <i>M</i>соответственно, делящие эти стороны в одинаковых отношениях. Пусть <i>b</i>,<i>c</i>,<i>d</i> — прямые, проходящие через <i>B</i>,<i>C</i>,<i>D</i>параллельно прямым<i>KL</i>,<i>KM</i>,<i>ML</i>соответственно. Докажите, что прямые <i>b</i>,<i>c</i>,<i>d</i>проходят через одну точку.

Через каждую вершину треугольника проведены две прямые, делящие противоположную сторону треугольника на три равные части. Докажите, что диагонали, соединяющие противоположные вершины шестиугольника, образованного этими прямыми, пересекаются в одной точке.

Пусть <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>,<i>D</i><sub>1</sub> — образы точек <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>при аффинном преобразовании. Докажите, что если$\overrightarrow{AB}$=$\overrightarrow{CD}$, то$\overrightarrow{A_1B_1}$=$\overrightarrow{C_1D_1}$.

Докажите, что при аффинном преобразовании параллельные прямые переходят в параллельные.

Докажите, что растяжение плоскости является аффинным преобразованием.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка