Олимпиадные задачи по теме «Теория чисел. Делимость» для 7 класса - сложность 1 с решениями
Теория чисел. Делимость
НазадСуществуют ли два одночлена, произведение которых равно –12<i>а</i><sup>4</sup><i>b</i>², а сумма является одночленом с коэффициентом 1?
На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?
Найдите все пары простых чисел, разность квадратов которых является простым числом.
Произведение двух натуральных чисел, каждое из которых не делится нацело на 10, равно 1000. Найдите их сумму.
Число умножили на сумму его цифр и получили 2008. Найдите это число.
В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?
Помогите Незнайке восстановить пример на деление двух чисел, если известно, что частное в пять раз меньше делимого и в семь раз больше делителя.
В равенстве (<i>ay<sup>b</sup></i>)<sup><i>c</i></sup> = – 64<i>y</i><sup>6</sup> замените <i>a, b</i> и <i>c</i> целыми числами, отличными от 1, так, чтобы получилось тождество.
Существует ли натуральное число, кратное 2007, сумма цифр которого равна 2007?
В конце четверти Вовочка выписал подряд в строчку свои текущие отметки по пению и поставил между некоторыми из них знак умножения. Произведение получившихся чисел оказалось равным 2007. Какая отметка выходит у Вовочки в четверти по пению? ("Колов" учительница пения не ставит.)
Найти четыре последовательных числа, произведение которых равно 1680.
а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?
б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?
Найдите наибольшее четырёхзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.
Подряд без пробелов выписали все чётные числа от 12 до 34. Получилось число 121416182022242628303234. Делится ли оно на 24?
109 яблок разложены по пакетам. В некоторых пакетах лежит по <i>x</i> яблок, в других – по три яблока.
Найдите все возможные значения <i>x</i>, если всего пакетов – 20.
Год проведения нынешнего математического праздника делится на его номер: 2006 : 17 = 118.
а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.
а) Из шахматной доски вырезали клетку a1. Можно ли то, что осталось, замостить доминошками 1×2?
б) Тот же вопрос, если вырезали две клетки a1 и h8.
в) Тот же вопрос, если вырезали клетки a1 и h1.
Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?
а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны?
б) Тот же вопрос, если в вершинах написаны числа 1 или –1.
После урока Олег поспорил с Сашей, уверяя, что он знает такое натуральное число <i>m</i>, что число <sup><i>m</i></sup>/<sub>3</sub> + <sup><i>m</i>²</sup>/<sub>2</sub> + <sup><i>m</i>³</sup>/<sub>6</sub> нецелое. Прав ли Олег? И если прав, то что это за число?
Олег собрал мешочек монет. Саша пересчитал их, и оказалось, что если разделить все монеты на пять равных кучек, то останется две лишние монеты. А если на четыре равные кучки – останется одна лишняя монета. В то же время монетки можно разделить на три равные кучки. Какое наименьшее число монет могло быть у Олега?
Можно ли расставить знаки «+» или «–» между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?
Петя сложил несколько чисел, среди которых было <i>N</i> чётных и <i>M</i> нечётных. Вы можете спросить у Пети про одно из чисел <i>N</i> или <i>M</i>, на ваш выбор, чётное ли оно. Достаточно ли этого, чтобы узнать, чётной или нечётной будет полученная Петей сумма?
Сможете ли вы найти шесть целых чисел, сумма и произведение которых являются нечётными числами? А двести?
Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?