Олимпиадные задачи по теме «Теория чисел. Делимость» для 2-9 класса - сложность 3 с решениями
Теория чисел. Делимость
НазадСуществуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?
Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?
Найдите все пары простых чисел <i>p</i> и <i>q</i>, обладающие следующим свойством: 7<i>p</i> + 1 делится на <i>q</i>, а 7<i>q</i> + 1 делится на <i>p</i>.
Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:
а) жалованье между отрядами Черномор распределяет как ему угодно;
б) жалованье между отрядами Черномор распределяет поровну?
Найдите все такие натуральные <i>k</i>, что при каждом нечётном <i>n</i> > 100 число 20<sup><i>n</i></sup> + 13<sup><i>n</i></sup> делится на <i>k</i>.
При каких <i>n</i> > 3 правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?
В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.
Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.
Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?
Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их <i>a</i> и <i>b</i>) и заменить их на числа <i>a</i>² – 2011<i>b</i>² и <i>ab</i>. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?
Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа <i>x + y</i>² + <i>z</i>², <i>x</i>² + <i>y</i> + <i>z</i>² и <i>x</i>² + <i>y</i>² + <i>z</i> целые. Докажите, что число 2<i>x</i> целое.
Для натуральных чисел <i>a</i> > <i>b</i> > 1 определим последовательность <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... формулой <img align="absmiddle" src="/storage/problem-media/116644/problem_116644_img_2.gif"> . Найдите наименьшее <i>d</i>, при котором ни при каких <i>a</i> и <i>b</i> эта последовательность не содержит <i>d</i> последовательных членов, являющихся простыми числами.
Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?
Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций <i>y</i> = sin <i>ax</i>, <i>y</i> = sin <i>bx</i> и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции <i>y</i> = sin <i>cx</i> проходит через все отмеченные точки.
Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)
На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
Дан квадрат <i>n</i>×<i>n</i>. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких <i>n</i> за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?
Сравните числа <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">
В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.
Найдите все такие натуральные числа <i>a</i> и <i>b</i>, что (<i>a + b</i>²)(<i>b + a</i>²) является целой степенью двойки.
Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.
Может ли ломаная пройти через все вершины клеток?
Квадратная доска разделена на <i>n</i>² прямоугольных клеток <i>n</i> – 1 горизонтальными и <i>n</i> – 1 вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все <i>n</i> клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.
Найдите все простые числа <i>p, q</i> и <i>r</i>, для которых выполняется равенство: <i>p + q</i> = (<i>p – q</i>)<sup><i>r</i></sup>.
Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>) делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>) для любого целого <i>n</i>?