Олимпиадные задачи по математике - сложность 3-5 с решениями
После обеда на <i>прозрачной</i> квадратной скатерти остались тёмные пятна общей площади <i>S</i>. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна <i>S</i><sub>1</sub>. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна <i>S</i>. Какое наименьшее значение может принимать величина <i>S</i><sub>1</sub> : <i>S</i>?
Учитель написал на доске в алфавитном порядке все возможные 2<i><sup>n</sup></i> слов, состоящих из <i>n</i> букв А или Б. Затем он заменил каждое слово на произведение <i>n</i> множителей, исправив каждую букву А на <i>x</i>, а каждую букву Б – на (1 – <i>x</i>), и сложил между собой несколько первых из этих многочленов от <i>x</i>. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от <i>x</i>.
Для <i>n</i> = 1, 2, 3 будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (<i>n</i> + 2), (<i>n</i> + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.). <div align="center"><img src="/storage/problem-media/116574/problem_116574_img_2.gif"></div>Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?
Три спортсмена стартовали одновременно из точки <i>A</i> и бежали по прямой в точку <i>B</i> каждый со своей постоянной скоростью. Добежав до точки <i>B</i>, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке <i>A</i>. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от <i>A</i> до <i>B</i> равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?
При какой перестановке <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2011</sub> чисел 1, 2, ..., 2011 значение выражения <div align="center"><img src="/storage/problem-media/116235/problem_116235_img_2.png"></div>будет наибольшим?
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга, содержащегося в такой проекции?
Докажите, что если числа <i>x, y, z</i> при некоторых значениях <i>p</i> и <i>q</i> являются решениями системы
<i>y = x<sup>n</sup> + px + q, z = y<sup>n</sup> + py + q, x = z<sup>n</sup> + pz + q</i>,
то выполнено неравенство <i>x</i>²<i>y + y</i>²<i>z + z</i>²<i>x ≥ x</i>²<i>z + y</i>²<i>x + z</i>²<i>y</i>.
Рассмотрите случаи а) <i>n</i> = 2; б) <i>n</i> = 2010.
Докажите, что при любом разбиении ста "двузначных" чисел 00, 01, ..., 99 на две группы некоторые числа хотя бы одной группы можно записать в ряд так, чтобы каждые два соседних числа этого ряда отличались друг от друга на 1, 10 или 11, и хотя бы в одном из двух разрядов (единиц или десятков) встречались все 10 различных цифр.
Моток ниток проткнули насквозь 72 цилиндрическими спицами радиуса 1 каждая, в результате чего он приобрел форму цилиндра радиуса 6. Могла ли высота этого цилиндра оказаться также равной 6?
Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_2.gif"> </i>, б) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_3.gif"> </i>, в) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_4.gif"> </i>?
Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника:
а) через 3 шага с точностью до 0,3;
б) через 2007 шагов с точностью до 0,003?
Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы. а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна? б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2. в) Докажите, что для любого числа <i>s</i>>1/2 существует надёжная система бойниц с суммарной длиной, меньшей <i>s</i>.
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает<i>n</i>точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (<i>n</i>+1)<sup>2</sup>попыток?
В выпуклом многограннике обозначим через B, P и T соответственно число вершин, рёбер и максимальное число треугольных граней, которые имеют общую вершину. Докажите, что {$\text{В}\sqrt{\text{Р}+\text{Т}}\geqslant 2\text{Р}$}. Например, для тетраэдра ($\text{В}=4$, $\text{Р}=6$, $\text{Т}=3$) выполняется равенство, а для треугольной призмы ($\text{В}=6$, $\text{Р}=9$, $\text{Т}=1$) или куба ($\text{В}=8$, $\text{Р}=12$, $\text{Т}=0$) имеет место строгое неравенство.
Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.
Каждая точка плоскости раскрашена в один из трех цветов. Обязательно ли найдется треугольник площади 1, все вершины которого имеют одинаковый цвет?
Существует ли такой выпуклый четырехугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?
На сторонах выпуклого шестиугольника $ABCDEF$ во внешнюю сторону построены правильные треугольники $ABC_1$, $BCD_1$, $CDE_1$, $DEF_1$, $EFA_1$ и $FAB_1$. Оказалось, что треугольник $B_1D_1F_1$ правильный. Докажите, что треугольник $A_1C_1E_1$ также правильный.
На сторонах выпуклого шестиугольника <i>ABCDEF</i> во внешнюю сторону построены равносторонние треугольники <i>ABC</i><sub>1</sub>, <i>BCD</i><sub>1</sub>, <i>CDE</i><sub>1</sub>, <i>DEF</i><sub>1</sub>, <i>EFA</i><sub>1</sub> и <i>FAB</i><sub>1</sub>. Оказалось, что треугольник <i>B</i><sub>1</sub><i>D</i><sub>1</sub><i>F</i><sub>1</sub> – равносторонний. Докажите, что треугольник <i>A</i><sub>1</sub><i>C</i><sub>1</sub><i>E</i><sub>1</sub> также равносторонний.
Внутри треугольника <i>ABC</i> взята такая точка <i>D</i>, что <i>BD = CD</i>, ∠<i>BDC</i> = 120°. Вне треугольника <i>ABC</i> взята такая точка <i>E</i>, что <i>AE = CE</i>, ∠<i>AEC</i> = 60° и точки <i>B</i> и <i>E</i> находятся в разных полуплоскостях относительно <i>AC</i>. Докажите, что ∠<i>AFD</i> = 90°, где <i>F</i> – середина отрезка <i>BE</i>.
Детектив Ниро Вульф расследует преступление. В деле замешаны 80 человек, среди которых один – преступник, еще один – свидетель преступления (но неизвестно, кто это). Каждый день детектив может пригласить к себе одного или нескольких из этих 80 человек, и если среди приглашенных есть свидетель, но нет преступника, то свидетель сообщит, кто преступник. Может ли детектив заведомо раскрыть дело за 12 дней?
Три велосипедиста ездят в одном направлении по круглому треку длиной 300 метров. Каждый из них движется со своей постоянной скоростью, все скорости различны. Фотограф сможет сделать удачный снимок велосипедистов, если все они окажутся на каком-либо участке трека длиной <i>d</i> метров. При каком наименьшем <i>d</i> фотограф рано или поздно заведомо сможет сделать удачный снимок?
Про приведённый многочлен <i>P</i>(<i>x</i>) = <i>x<sup>n</sup></i> + <i>a</i><sub><i>n</i>–1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub>1</sub><i>x + a</i><sub>0</sub> с действительными коэффициентами известно, что при некотором натуральном
<i>m</i> ≥ 2 многочлен <img align="absmiddle" src="/storage/problem-media/65692/problem_65692_img_2.gif"> имеет действительные корни, причём только положительные. Обязательно ли сам многочлен <i>P</i>(<i>x</i>) имеет действительные корни, причём только положительные?