Олимпиадные задачи по математике для 8-11 класса - сложность 3 с решениями
а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.
<i>AD</i> и <i>BE</i> — высоты треугольника <i>ABC</i>. Оказалось, что точка <i>C'</i>, симметричная вершине <i>C</i> относительно середины отрезка <i>DE</i>, лежит на стороне <i>AB</i>. Докажите, что <i>AB</i> – касательная к окружности, описанной около треугольника <i>DEC'</i>.
Дан четырёхугольник <i>ABCD</i>. Оказалось, что описанная окружность треугольника <i>ABC</i>, касается стороны <i>CD</i>, а описанная окружность треугольника <i>ACD</i> касается стороны <i>AB</i>. Докажите, что диагональ <i>AC</i> меньше, чем расстояние между серединами сторон <i>AB</i> и <i>CD</i>.
Легко разместить комплект кораблей для игры в "Морской бой" на доске 10× 10 (см. рис.). А на какой наименьшей квадратной доске можно разместить этот комплект? (Напомним, что согласно правилам корабли не должны соприкасаться даже углами.)
<center><i> <img align="absmiddle" src="/storage/problem-media/115384/problem_115384_img_2.gif"> </i></center>
Казино предлагает игру по таким правилам. Игрок ставит любое целое число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести из казино после такой игры?
Точки <i>M</i> и <i>N</i> – середины сторон <i>AB</i> и <i>CD</i> соответственно четырёхугольника <i>ABCD</i>. Известно, что <i>BC || AD</i> и <i>AN = CM</i>.
Верно ли, что <i>ABCD</i> – параллелограмм?
Окружность, проходящая через вершины <i>A, B</i> и точку пересечения высот треугольника <i>ABC</i>, пересекает стороны <i>AC</i> и <i>BC</i> во внутренних точках.
Докажите, что 60° < ∠<i>C</i> < 90°.
В турнире по футболу участвует 2<i>n</i> команд (<i>n</i> > 1). В каждом туре команды разбиваются на <i>n</i> пар и команды в каждой паре играют между собой. Так провели 2<i>n</i> – 1 тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.
Верно ли, что существуют выпуклые многогранники с любым количеством диагоналей? (<i>Диагональю</i> называется отрезок, соединяющий две вершины многогранника и не лежащий на его поверхности.)
В треугольнике <i>ABC</i> отмечены середины сторон <i>AC</i> и <i>BC</i> – точки <i>M</i> и <i>N</i> соответственно. Угол <i>MAN</i> равен 15°, а угол <i>BAN</i> равен 45°.
Найдите угол <i>ABM</i>.
Дан треугольник <i>ABC</i>. На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> взяты соответственно точки <i>C</i><sub>1</sub> и <i>A</i><sub>1</sub> так, что <i>AC = A</i><sub>1</sub><i>C = AC</i><sub>1</sub>.
Докажите, что описанные окружности треугольников <i>ABA</i><sub>1</sub> и <i>CBC</i><sub>1</sub> пересекаются на биссектрисе угла <i>B</i>.