Олимпиадные задачи по математике для 3-9 класса - сложность 3 с решениями

Даны <i>n</i> точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

В вершинах квадрата сидят четыре кузнечика. Они прыгают в произвольном порядке, но не одновременно. Каждый кузнечик прыгает в такую точку, которая симметрична точке, в которой он находился до прыжка, относительно центра тяжести трёх других кузнечиков. Может ли в какой-то момент один кузнечик приземлиться на другого? (Кузнечики точечные.)

В таблице <i>m</i> строк, <i>n</i> столбцов. <i>Горизонтальным ходом</i> называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется <i>вертикальный ход</i> ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое <i>k</i>, что за <i>k</i> ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.

Числовая последовательность определяется условиями:   <img align="absmiddle" src="/storage/problem-media/98152/problem_98152_img_2.gif">  

Докажите, что среди членов этой последовательности бесконечно много полных квадратов.

 

Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?

Числа 1, 2, 3, ..., <i>N</i> записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число <i>i</i>, то где-то слева от него встретится хотя бы одно из чисел  <i>i</i> + 1  и  <i>i</i> – 1.  Сколькими способами это можно сделать?

Город представляет собой бесконечную клетчатую плоскость (линии – улицы, клеточки – кварталы). На одной улице через каждые 100 кварталов на перекрестках стоит по милиционеру. Где-то в городе есть бандит (местонахождение его неизвестно, но перемещается он только по улицам). Цель милиции – увидеть бандита. Есть ли у милиции способ (алгоритм) наверняка достигнуть своей цели? (Максимальные скорости милиции и бандита какие-то конечные, но не известные нам величины, милиция видит вдоль улиц во все стороны на бесконечное расстояние.)

Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.

Последовательность чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ...  такова, что  <i>x</i><sub>1</sub> = ½  и   <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_2.gif">   для всякого натурального <i>k</i>.

Найдите целую часть суммы   <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_3.gif">

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...  – возрастающая последовательность натуральных чисел. Известно, что  <i>a<sub>a<sub>k</sub></sub></i> = 3<i>k</i>  для любого <i>k</i>.

Найти   а)  <i>a</i><sub>100</sub>;   б)  <i>a</i><sub>1983</sub>.

Внутри правильного <i>n</i>-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2<i>n</i> отрезков. Занумеруем их подряд:  1, 2, 3, ..., 2<i>n</i>.  Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.

Несколько ребят стоят по кругу. У каждого есть некоторое количество конфет. Сначала у каждого чётное количество конфет. По команде каждый передает половину своих конфет стоящему справа. Если после этого у кого-нибудь оказалось нечётное количество конфет, то ему извне добавляется одна конфета. Это повторяется много раз. Доказать, что настанет время, когда у всех будет поровну конфет.

Квадрат разбит на <i>n</i>² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной?

64 друга одновременно узнали 64 новости, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями. Каждый разговор длится 1 час. Какое минимальное количество часов необходимо, чтобы все узнали все новости? (Во время одного разговора можно передать сколько угодно новостей.)

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

  Дан выпуклый четырёхугольник <i>ABCD</i>. Каждая его сторона разбита на <i>k</i> равных частей. Точки деления, принадлежащие стороне <i>AB</i>, соединены прямыми с точками деления, принадлежащими стороне <i>CD</i>, так что первая, считая от <i>A</i>, точка деления соединена с первой точкой деления, считая от <i>D</i>, вторая, считая от <i>A</i>, – со второй, считая от <i>D</i>, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне <i>BC</i>, аналогичным образом соединены с точками деления, принадлежащими стороне <i>DA</i> (вторая серия прямых). Образовалось <i>k</i>² маленьких четырёхугольников. Из них выбрано <i>k</i> четырёхуго...

В выпуклом четырёхугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырёхугольника. Докажите, что диагонали равны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка