Олимпиадные задачи по математике для 11 класса - сложность 2-5 с решениями

Даны <i>n</i> точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

Число рёбер многогранника равно 100.

  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?

  б) Докажите, что для невыпуклого многогранника это число может равняться 96,

  в) но не может равняться 100.

Числовая последовательность определяется условиями:   <img align="absmiddle" src="/storage/problem-media/98159/problem_98159_img_2.gif">

Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?

Даны три треугольника: <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub><i>B</i><sub>3</sub>, <i>C</i><sub>1</sub><i>C</i><sub>2</sub><i>C</i><sub>3</sub>. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида <i>A<sub>i</sub>B<sub>j</sub>C<sub>k</sub></i>, где <i>i, j, k</i> независимо пробегают значения 1, 2, 3. Докажите, что...

Можно ли разрезать плоскость на многоугольники, каждый из которых переходит в себя при повороте на <sup>360°</sup>/<sub>7</sub> вокруг некоторой точки и все стороны которых больше 1 см?

Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.

В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.

(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.

Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.

<i>F</i>(<i>x</i>) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное <i>n</i>, график функции можно покрыть <i>N</i> прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна <sup>1</sup>/<sub><i>n</i>²</sub>. (В прямоугольник мы включаем его внутренние точки и точки его границы.)

Квадрат разбит на <i>n</i>² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной?

<i>N</i> друзей одновременно узнали <i>N</i> новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.

Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.

Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:

  а)  <i>N</i> = 64,

  б)  <i>N</i> = 55,

  в)  <i>N</i> = 100.

Будем говорить, что две пирамиды <i>соприкасаются гранями</i>, если эти пирамиды не имеют общих внутренних точек и некоторая грань одной пирамиды пересекается с некоторой гранью другой пирамиды по многоугольнику. Можно ли расположить восемь пирамид в пространстве так, чтобы каждые две соприкасались гранями?

64 друга одновременно узнали 64 новости, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями. Каждый разговор длится 1 час. Какое минимальное количество часов необходимо, чтобы все узнали все новости? (Во время одного разговора можно передать сколько угодно новостей.)

  Дан выпуклый четырёхугольник <i>ABCD</i>. Каждая его сторона разбита на <i>k</i> равных частей. Точки деления, принадлежащие стороне <i>AB</i>, соединены прямыми с точками деления, принадлежащими стороне <i>CD</i>, так что первая, считая от <i>A</i>, точка деления соединена с первой точкой деления, считая от <i>D</i>, вторая, считая от <i>A</i>, – со второй, считая от <i>D</i>, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне <i>BC</i>, аналогичным образом соединены с точками деления, принадлежащими стороне <i>DA</i> (вторая серия прямых). Образовалось <i>k</i>² маленьких четырёхугольников. Из них выбрано <i>k</i> четырёхуго...

В таблице <i>N</i>×<i>N</i>, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном элементе).

Докажите, что из таблицы можно вычеркнуть некоторый столбец так, что в оставшейся таблице опять все строки будут различны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка