Олимпиадная задача по стереометрии и теории чисел для 8-11 классов: "Куб из кирпичей"
Задача
Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.
Решение
Каждую грань 20×20 куба можно проткнуть в 19·19 = 361 точке, а поскольку у куба три пары параллельных граней, всего имеется 361·3 = 1083 "возможных протыканий". Допустим, что куб нельзя проткнуть насквозь, то есть каждое из 1083 возможных протыканий заблокировано гранью 2×2 некоторого кирпича. Докажем, что каждое протыкание заблокировано чётным числом кирпичей. Введём иглу до конца и рассмотрим параллелепипед, закрашенный на рисунке.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет