Олимпиадные задачи по математике для 8 класса - сложность 2-4 с решениями

Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

На плоскости расположено[<i><img src="/storage/problem-media/110102/problem_110102_img_2.gif"> n</i>]прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с<i> n </i>прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.

В выпуклом многоугольнике на плоскости содержится не меньше  <i>m</i>² + 1  точек с целыми координатами.

Докажите, что в нём найдутся  <i>m</i> + 1  точек с целыми координатами, которые лежат на одной прямой.

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  <i>N</i> + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

Каждый голосующий на выборах вносит в избирательный бюллетень фамилии<i> n </i>кандидатов. На избирательном участке находится<i> n+</i>1урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе(<i>n+</i>1)-го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.

На плоскости дано множество из<i> n<img src="/storage/problem-media/109961/problem_109961_img_2.gif"></i>9точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все<i> n </i>точек лежат на двух окружностях.

В каждой клетке квадратной таблицы размером <i>n×n</i> клеток  (<i>n</i> ≥ 3)  записано число 1 или –1. Если взять любые две строки, перемножить числа, стоящие в них друг над другом и сложить <i>n</i> получившихся произведений, то сумма будет равна 0. Докажите, что число <i>n</i> делится на 4.

Треугольник<i> T </i>содержится внутри выпуклого центрально-симметричного многоугольника<i> M </i>. Треугольник<i> T' </i>получается из треугольника<i> T </i>центральной симметрией относительно некоторой точки<i> P </i>, лежащей внутри треугольника<i> T </i>. Докажите, что хотя бы одна из вершин треугольника<i> T' </i>лежит внутри или на границе многоугольника<i> M </i>.

На прямой расположены2<i>k-</i>1белый и2<i>k-</i>1черный отрезок. Известно, что любой белый отрезок пересекается хотя бы с<i> k </i>черными, а любой черный – хотя бы с<i> k </i>белыми. Докажите, что найдутся черный отрезок, пересекающийся со всеми белыми, и белый отрезок, пересекающийся со всеми черными.

На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.

На прямоугольном столе лежат равные картонные квадраты<i> n </i>различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть любые<i> n </i>квадратов различных цветов, то какие-нибудь два из них можно прибить к столу одним гвоздем. Докажите, что все квадраты некоторого цвета можно прибить к столу2<i>n-</i>2гвоздями.

На координатной плоскости дан выпуклый пятиугольник<i> ABCDE </i>с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника<i> A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>E<sub>1</sub> </i><i> (см. рис.) </i>есть хотя бы одна целая точка. <center><i> <img src="/storage/problem-media/109709/problem_109709_img_2.gif"> </i></center>

В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.

Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной прямой тогда и только тогда, когда каждый многоугольник можно отделить от двух других прямой (т.е. существует прямая такая, что этот многоугольник и два остальных лежат по ее разные стороны).

Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из2<i>k </i>элементов (<i> k </i>– фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из(<i>k+</i>1)<i><sup>2</sup> </i>элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.

Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки.

На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой?

Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?

В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город <i>A доступен</i> для города <i>B</i>, если из <i>B</i> можно долететь в <i>A</i>, возможно, с пересадками. Известно, что для любых двух городов <i>P</i> и <i>Q</i> существует город <i>R</i>, для которого и <i>P</i>, и <i>Q</i> доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка