Олимпиадная задача по планиметрии и комбинаторной геометрии для 8–10 класса
Задача
На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.
Решение
Предположим противное. Заметим, что через каждую точку пересечения двух прямых проходит красная прямая. Рассмотрим синюю прямую l; пусть A, B – две наиболее удалённые друг от друга точки пересечения l с красными прямыми, m и n – красные прямые, проходящие через A и B, C – точка пересечения m и n. Тогда через C проходит синяя прямая p, которая пересекает l в какой-то точке D отрезка AB, иначе A и B – не наиболее удалённые (рис. слева).

Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь