Олимпиадные задачи из источника «Олимпиады и турниры» для 2-7 класса - сложность 1 с решениями
Олимпиады и турниры
Все источникиДима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.) <div align="center"><img src="/storage/problem-media/116964/problem_116964_img_2.gif"></div>
На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.
Разрежьте данную фигуру на три одинаковые части.<div align="center"><img src="/storage/problem-media/116863/problem_116863_img_2.gif"></div>
Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.
Чему равна сторона квадрата, если площадь прямоугольника 54 м²?
На карточках записаны числа 415, 43, 7, 8, 74, 3 (см. рисунок). Расположите карточки в ряд так, чтобы получившееся десятизначное число было наименьшим из возможных. <div align="center"><img src="/storage/problem-media/116858/problem_116858_img_2.gif"></div>
Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?<div align="center"><img src="/storage/problem-media/116843/problem_116843_img_2.gif"></div>
Собираясь в школу, Миша нашёл под подушкой, под диваном, на столе и под столом все необходимое: тетрадь, шпаргалку, плеер и кроссовки. Под столом он нашёл не тетрадь и не плеер. Мишины шпаргалки никогда не валяются на полу. Плеера не оказалось ни на столе, ни под диваном. Что где лежало, если в каждом из мест находился только один предмет?
В записи ¼ ¼ ¼ ¼ расставьте знаки действий и, если нужно, скобки так, чтобы значение получившегося выражения равнялось 2.
Иван, Петр и Сидор ели конфеты. Их фамилии – Иванов, Петров и Сидоров. Иванов съел на 2 конфеты меньше Ивана, Петров – на 2 конфеты меньше Петра, а Петр съел больше всех. У кого из них какая фамилия?
Длина крокодила от головы до хвоста в три раза меньше десяти кэн, а от хвоста до головы равна трем кэн и двум сяку. Известно, что одна сяку равна 30 см. Найдите длину крокодила в метрах. (<i>Кэн и сяку – японские единицы длины</i>.)
В каком году установлен памятник Юрию Долгорукому, если в записи этого числа последняя цифра на единицу меньше предыдущей и при зачеркивании первой и последней цифры получается наибольшее двузначное число с суммой цифр 14?
Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?
На рисунке изображен график функции <i>у = kx + b</i> . Сравните |<i>k</i>| и |<i>b</i>|. <div align="center"><img src="/storage/problem-media/116734/problem_116734_img_2.gif"></div>
У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?
Существуют ли два одночлена, произведение которых равно –12<i>а</i><sup>4</sup><i>b</i>², а сумма является одночленом с коэффициентом 1?
Города <i>A</i>, <i>B</i> и <i>C</i> вместе с соединяющими их прямыми дорогами образуют треугольник. Известно, что прямой путь из <i>A</i> в <i>B</i> на 200 км короче объезда через <i>C</i>, а прямой путь из <i>A</i> в <i>C</i> на 300 км короче объезда через <i>B</i>. Найдите расстояние между городами <i>B</i> и C.
Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). <div align="center"><img src="/storage/problem-media/116655/problem_116655_img_2.gif"></div>А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?
Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)
Квадрат 3×3 заполнен цифрами так, как показано на рисунке слева. Разрешается ходить по клеткам этого квадрата, переходя из клетки в соседнюю (по стороне), но ни в какую клетку не разрешается попадать дважды.
<div align="center"><img align="middle" src="/storage/problem-media/116609/problem_116609_img_2.gif"></div> Петя прошёл, как показано на рисунке справа, и выписал по порядку все цифры, встретившиеся по пути, – получилось число 84937561. Нарисуйте другой путь так, чтобы получилось число побольше (чем больше, тем лучше).
Торт упакован в коробку с квадратным основанием. Высота коробки вдвое меньше стороны этого квадрата. Ленточкой длины 156 см можно перевязать коробку и сделать бантик сверху (как на рисунке слева). А чтобы перевязать её с точно таким же бантиком сбоку (как на рисунке справа), нужна ленточка длины 178 см. Найдите размеры коробки. <div align="center"><img src="/storage/problem-media/116606/problem_116606_img_2.gif"></div>
Пазл Пете понравился, он решил его склеить и повесить на стену. За одну минуту он склеивал вместе два куска (начальных или ранее склеенных). В результате весь пазл соединился в одну цельную картину за 2 часа. За какое время собралась бы картина, если бы Петя склеивал вместе за минуту не по два, а по три куска?
Разрежьте рамку (см. рис.) на 16 равных частей. <div align="center"><img src="/storage/problem-media/116603/problem_116603_img_2.gif"></div>
На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками
равно 1). Чему равен дискриминант этого трёхчлена? <div align="center"><img src="/storage/problem-media/116482/problem_116482_img_2.gif"></div>
После возвращения цирка с гастролей, знакомые расспрашивали дрессировщика Казимира Алмазова о пассажирах его автофургона.
– Тигры были?
– Да, причём их было в семь раз больше, чем не тигров.
– А обезьяны?
– Да, их было в семь раз меньше, чем не обезьян.
– А львы были?
Ответьте за Казимира Алмазова.
На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?