Олимпиадные задачи из источника «Олимпиады и турниры» для 1-8 класса - сложность 5 с решениями
Олимпиады и турниры
Все источникиИспользуя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег.
В нашем распоряжении имеются 3<sup>2<i>k</i></sup>неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3<i>k + </i>1 взвешиваний?
На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.
Каждая пара противоположных сторон данного выпуклого шестиугольника обладает следующим свойством: расстояние между серединами равно<i> <img src="/storage/problem-media/111041/problem_111041_img_2.gif">/</i>2умноженное на сумму их длин. Докажите, что все углы в шестиугольнике равны.
Даны натуральные числа<i> p<k<n </i>. На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (<i>k+</i>1)×<i>n </i>(<i> n </i>клеток по горизонтали,<i> k+</i>1– по вертикали) отмечено ровно<i> p </i>клеток. Докажите, что существует прямоугольник<i> k</i>×(<i>n+</i>1) (где<i> n+</i>1клетка по горизонтали,<i> k </i>– по вертикали), в котором отмечено не менее<i> p+</i>1клетки.
Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом.
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Окружность<i> σ </i>касается равных сторон<i> AB </i>и<i> AC </i>равнобедренного треугольника<i> ABC </i>и пересекает сторону<i> BC </i>в точках<i> K </i>и<i> L </i>. Отрезок<i> AK </i>пересекает<i> σ </i>второй раз в точке<i> M </i>. Точки<i> P </i>и<i> Q </i>симметричны точке<i> K </i>относительно точек<i> B </i>и<i> C </i>соответственно. Докажите, что описанная окружность треугольника<i> PMQ </i>касается окружности<i> σ </i>.
За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.
На плоскости дано<i> k </i>точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все<i> k </i>точек лежат на одной прямой.
Точки<i> A</i>2,<i> B</i>2и<i> C</i>2– середины высот<i> AA</i>1,<i> BB</i>1и<i> CC</i>1остроугольного треугольника<i> ABC </i>. Найдите сумму углов<i> B</i>2<i>A</i>1<i>C</i>2,<i> C</i>2<i>B</i>1<i>A</i>2и<i> A</i>2<i>C</i>1<i>B</i>2.
Окружность, вписанная в четырёхугольник<i> ABCD </i>, касается его сторон<i> DA </i>,<i> AB </i>,<i> BC </i>и<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>и<i> N </i>соответственно. Пусть<i> S</i>1,<i> S</i>2,<i> S</i>3и<i> S</i>4– окружности, вписанные в треугольники<i> AKL </i>,<i> BLM </i>,<i> CMN </i>и<i> DNK </i>соответственно. К окружностям<i> S</i>1и<i> S</i>2,<i> S</i>2и<i> S</i>3,<i> S</i>3и<i> S</i>4,<i> S</i>4и<i> S</i>1проведены общие касательные, отличные от сторон четырёхугол...
На столе лежат 15 журналов, закрывающих его целиком. Докажите, что можно забрать семь журналов так, чтобы оставшиеся журналы закрывали не меньше 8/15 площади стола.
(<i>Эту задачу не решил никто из участников олимпиады</i>.)
Расположите (На плоскости — прим. ред.) 4 точки так, чтобы при измерении всех попарных расстояний между ними получалось только два различных числа. Отыщите все такие расположения.
Из тридцати пунктов<i>A</i><sub>1</sub>,<i>A</i><sub>2</sub>, ...,<i>A</i><sub>30</sub>, расположенных на прямой<i>MN</i>на равных расстояниях друг от друга, выходят тридцать прямых дорог. Эти дороги располагаются по одну сторону от прямой<i>MN</i>и образуют с<i>MN</i>следующие углы:<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="LEFT"> </td> <td align="LEFT">1</td> <td align="LEFT">2</td> <td align="LEFT">3</td> <td align="LEFT">4</td> <td align="LEFT">5</td> <td align="LEFT">6</td>...
В треугольнике $ABC$ с тупым углом $B$ отмечены такие точки $P$ и $Q$ на $AC$, что $AP=PB$, $BQ=QC$. Окружность $BPQ$ пересекает стороны $AB$ и $BC$ в точках $N$ и $M$ соответственно. а) (<i>П.Рябов</i>) Докажите, что точка $R$ пересечения $PM$ и $NQ$ равноудалена от $A$ и $C$.
б) (<i>А.Заславский</i>) Пусть $BR$ пересекает $AC$ в точке $S$. Докажите, что $MN\perp OS$, где $O$ – центр описанной окружности треугольника $ABC$.
Белая фигура «жук» стоит в угловой клетке доски $1000\times n$, где $n$ — нечётное натуральное число, большее $2020$. В двух ближайших к ней углах доски стоят два чёрных шахматных слона. При каждом ходе жук или переходит на клетку, соседнюю по стороне, или ходит как шахматный конь. Жук хочет достичь противоположного угла доски, не проходя через клетки, занятые или атакованные слоном, и побывав на каждой из остальных клеток ровно по одному разу. Покажите, что количество путей, по которым может пройти жук, не зависит от $n$.
Выпуклый четырёхугольник $ABCD$ обладает таким свойством: ни из каких трёх его сторон нельзя сложить треугольник. Докажите, что а) один из углов этого четырёхугольника не больше $60^\circ$; б) один из углов этого четырёхугольника не меньше $120^\circ$.
У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она выбирает из неё половину карт, какие хочет, и отдает Василисе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди открывают по одной карте по своему выбору (соперник видит масть и достоинство открытой карты), начиная с Полины. Если в ответ на ход Полины Василиса смогла положить карту той же масти или того же достоинства, то Василиса зарабатывает одно очко. Какое наибольшее количество очков Василиса может гарантированно заработать?
Женя красила шарообразное яйцо последовательно в пяти красках, погружая его в стакан с очередной краской так, чтобы окрашивалась ровно половина площади поверхности яйца (полсферы). В результате яйцо окрасилось полностью. Докажите, что одна из красок была лишней, то есть если бы Женя не использовала эту краску, а в другие краски погружала бы яйцо так же, то оно всё равно окрасилось бы полностью.
В доме из $2^n$ комнат сделали евроремонт. При этом выключатели света оказались перепутанными, так что при включении выключателя в одной комнате загорается лампочка, вообще говоря, в какой-то другой комнате. Чтобы узнать, какой выключатель к какой комнате подсоединён, прораб посылает несколько людей в какие-то комнаты, чтобы те, одновременно включив там выключатели, вернулись и сообщили ему, горела лампочка в их комнате или нет. а) Докажите, что за $2n$ таких посылок прораб может установить соответствие между выключателями и комнатами. б) А может ли он обойтись $2n-1$ такими посылками?