Олимпиадные задачи из источника «2011-2012» - сложность 2 с решениями

Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?

По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.

Пусть  <i>a</i><sub>1</sub>, ..., <i>a</i><sub>11</sub>  – различные натуральные числа, не меньшие 2, сумма которых равна 407.

Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 22 числа  <i>a</i><sub>1</sub>, ..., <i>a</i><sub>11</sub>, 4<i>a</i><sub>1</sub>, 4<i>a</i><sub>2</sub>, ..., 4<i>a</i><sub>11</sub>  равняться 2012?

В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно <i>n</i> побед, а каждая команда второй группы – ровно <i>m</i> побед. Могло ли оказаться, что  <i>m</i> ≠ <i>n</i>?

На плоскости нарисованы <i>n</i> > 2 различных векторов  <i><b>a</b></i><sub>1</sub>, <i><b>a</b></i><sub>2</sub>, ..., <i><b>a</b><sub>n</sub></i>  с равными длинами. Оказалось, что все векторы  –<i><b>a</b></i><sub>1</sub> + <i><b>a</b></i><sub>2</sub> + ... + <i><b>a</b><sub>n</sub></i>,

<i><b>a</b></i><sub>1</sub> – <i><b>a</b></i><sub>2</sub> + <i><b>a</b></i><sub>3</sub> + ... + <i><b>a</b><sub>n</sub></i>,  <...

Через вершины основания четырёхугольной пирамиды <i>SABCD</i> проведены прямые, параллельные противоположным боковым рёбрам (через вершину <i>A</i> – параллельно <i>SC</i>, и так далее). Эти четыре прямые пересеклись в одной точке. Докажите, что четырёхугольник <i>ABCD</i> – параллелограмм.

Петя выбрал натуральное число  <i>a</i> > 1  и выписал на доску пятнадцать чисел  1 + <i>a</i>,  1 + <i>a</i>²,  1 + <i>a</i>³,  ...,  1 + <i>a</i><sup>15</sup>.  Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?

Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?

Последовательность чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  задана условиями  <i>a</i><sub>1</sub> = 1,  <i>a</i><sub>2</sub> = 143  и   <img align="absmiddle" src="/storage/problem-media/116589/problem_116589_img_2.gif">   при всех  <i>n</i> ≥ 2.

Докажите, что все члены последовательности – целые числа.

Дан выпуклый шестиугольник <i>ABCDEF</i>. Известно, что  ∠<i>FAE</i> = ∠<i>BDC</i>,  а четырёхугольники <i>ABDF</i> и <i>ACDE</i> являются вписанными.

Докажите, что прямые <i>BF</i> и <i>CE</i> параллельны.

Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.

На стороне <i>AC</i> треугольника <i>ABC</i> отметили произвольную точку <i>D</i>. Точки <i>E</i> и <i>F</i> симметричны точке <i>D</i> относительно биссектрис углов <i>A</i> и <i>C</i> соответственно. Докажите, что середина отрезка <i>EF</i> лежит на прямой <i>A</i><sub>0</sub><i>C</i><sub>0</sub>, где <i>A</i><sub>0</sub> и <i>C</i><sub>0</sub> – точки касания вписанной окружности треугольника <i>ABC</i> со сторонами <i>BC</i> и <i>AB</i> соответственно.

Числа <i>a</i> и <i>b</i> таковы, что   <i>a</i>³ – <i>b</i>³ = 2,  <i>a</i><sup>5</sup> – <i>b</i><sup>5</sup> ≥ 4.   Докажите, что  <i>a</i>² + <i>b</i>² ≥ 2.

Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался?

За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"?

Окружности ω<sub>1</sub> и ω<sub>2</sub> касаются внешним образом в точке <i>P</i>. Через центр ω<sub>1</sub> проведена прямая <i>l</i><sub>1</sub>, касающаяся ω<sub>2</sub>. Аналогично прямая <i>l</i><sub>2</sub> касается ω<sub>1</sub> и проходит через центр ω<sub>2</sub>. Оказалось, что прямые <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub> непараллельны. Докажите, что точка <i>P</i> лежит на биссектрисе одного из углов, образованных <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub>.

На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка