Олимпиадные задачи из источника «2003-2004» для 11 класса - сложность 4 с решениями
2003-2004
НазадВ некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно было добраться до любого другого. Министр транспорта и министр внутренних дел по очереди вводят на дорогах, пока есть возможность, одностороннее движение (на одной дороге за ход), причём министр, после хода которого из какого-либо города стало невозможно добраться до какого-либо другого, немедленно уходит в отставку. Первым ходит министр транспорта.
Может ли кто-либо из министров добиться отставки другого независимо от его игры?
Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?
Окружности<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>пересекаются в точках<i> A </i>и<i> B </i>. В точке<i> A </i>к<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>проведены соответственно касательные<i> l<sub>1</sub> </i>и<i> l<sub>2</sub> </i>. Точки<i> T<sub>1</sub> </i>и<i> T<sub>2</sub> </i>выбраны соответственно на окружностях<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>так, что угловые меры дуг<i> T<sub>1</sub>A </i>и<i> AT<sub>2</sub> </i>равны (величина дуги...
На плоскости отмечено<i> N<img src="/storage/problem-media/110154/problem_110154_img_2.gif"> </i>3различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более<i> n </i>различных расстояний. Докажите, что<i> N<img src="/storage/problem-media/110154/problem_110154_img_3.gif"> </i>(<i>n+</i>1)<i><sup>2</sup> </i>.
Дана треугольная пирамида<i> ABCD </i>. Сфера<i> S<sub>1</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> C </i>, пересекает ребра<i> AD </i>,<i> BD </i>,<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>соответственно; сфера<i> S<sub>2</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> D </i>, пересекает ребра<i> AC </i>,<i> BC </i>,<i> DC </i>в точках<i> P </i>,<i> Q </i>,<i> M </i>соответственно. Оказалось, что<i> KL|| PQ </i>. Докажите, что биссектрисы плоских углов<i> KMQ <...
Расстоянием между числами <span style="text-decoration: overline;"><i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub><i>a</i><sub>4</sub><i>a</i><sub>5</sub></span> и <span style="text-decoration: overline;"><i>b</i><sub>1</sub><i>b</i><sub>2</sub><i>b</i><sub>3</sub><i>b</i><sub>4</sub><i>b</i><sub>5</sub></span> назовём максимальное <i>i</i>, для которого <i>a<sub>i</sub></i> ≠ <i>b<sub>i</sub></i>. Все пятизначные числа выписаны друг...
Существует ли такое натуральное число <i>n</i> > 10<sup>1000</sup>, не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?
В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.
Четырёхугольник <i>ABCD</i> является одновременно и вписанным, и описанным, причём вписанная в <i>ABCD</i> окружность касается его сторон <i>AB, BC, CD</i> и <i>AD</i> в точках <i>K, L, M, N</i> соответственно. Биссектрисы внешних углов <i>A</i> и <i>B</i> четырёхугольника пересекаются в точке <i>K'</i>, внешних углов <i>B</i> и <i>C</i> – в точке <i>L'</i>, внешних углов <i>C</i> и <i>D</i> – в точке <i>M'</i>, внешних углов <i>D</i> и <i>A</i> – в точке <i>N'</i>. Докажите, что прямые <i>KK', LL', MM'</i> и <i>NN'</i> проход...
В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими <i> k </i> авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на <i>k</i> + 2 группы так, что никакие два города из одной группы не соединены авиалинией.
Докажите, что не существует конечного множества, содержащего более2<i>N </i>(<i> N></i>3) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.<ol type="1"> <li>Для любых <i> N </i> векторов этого множества найдется еще такой <i> N-</i>1 вектор из этого множества, что сумма всех 2<i>N-</i>1 векторов равна нулю;
</li><li>для любых <i> N </i> векторов этого множества найдутся еще такие <i> N </i> векторов из этого множества, что сумма всех 2<i>N </i> векторов равна нулю. </li></ol>
Пусть<i> M={x<sub>1</sub>, .., x</i>30<i>} </i>– множество, состоящее из 30 различных положительных чисел;<i> A<sub>n</sub> </i>(1<i><img src="/storage/problem-media/109798/problem_109798_img_2.gif"> n<img src="/storage/problem-media/109798/problem_109798_img_2.gif"> </i>30) – сумма всевозможных произведений различных<i> n </i>элементов множества<i> M </i>. Докажите, что если<i> A</i>15<i>>A</i>10, то<i> A<sub>1</sub>></i>1.
В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Даны многочлены <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>). Известно, что для некоторого многочлена <i>R</i>(<i>x, y</i>) выполняется равенство <i>P</i>(<i>x</i>) – <i>P</i>(<i>y</i>) = <i>R</i>(<i>x, y</i>)(<i>Q</i>(<i>x</i>) – <i>Q</i>(<i>y</i>)).
Докажите, что существует такой многочлен <i>S</i>(<i>x</i>), что <i>P</i>(<i>x</i>) = <i>S</i>(<i>Q</i>(<i>x</i>)).