Олимпиадные задачи из источника «1995-1996» для 2-11 класса - сложность 2 с решениями

Незнайка написал на доске несколько различных натуральных чисел и поделил (в уме) сумму этих чисел на их произведение. После этого Незнайка стёр самое маленькое число и поделил (опять в уме) сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число Незнайка стёр?

Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?

Назовем билет с номером от 000000 до 999999<i>отличным</i>, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.

Мороженое стоит 2000 рублей. У Пети имеется  400<sup>5</sup> – 399²·(400³ + 2·400² + 3·400 + 4)  рублей. Достаточно ли у Пети денег на мороженое?

Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

Найдите все такие пары квадратных трёхчленов  <i>x</i>² + <i>ax + b</i>,  <i>x</i>² + <i>cx + d</i>,  что <i>a</i> и <i>b</i> – корни второго трёхчлена, <i>c</i> и <i>d</i> – корни первого.

Докажите, что если <i>a, b, c</i> – положительные числа и  <i>ab + bc + ca > a + b + c</i>,  то  <i>a + b + c</i> > 3.

<center><i> <img src="/storage/problem-media/109632/problem_109632_img_2.gif"> </i></center> Центры<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих о...

Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?

В равнобедренном треугольнике <i>ABC</i>  (<i>AB = BC</i>)  на стороне <i>AB</i> выбрана точка <i>D</i>, и вокруг треугольников <i>ADC</i> и <i>BDC</i> описаны окружности <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> соответственно. Касательная, проведённая к <i>S</i><sub>1</sub> в точке <i>D</i>, пересекает второй раз окружность <i>S</i><sub>2</sub> в точке <i>M</i>. Докажите, что  <i>BM || AC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка