Олимпиадные задачи из источника «18 турнир (1996/1997 год)» для 10-11 класса - сложность 2 с решениями
18 турнир (1996/1997 год)
НазадОколо правильного тетраэдра <i>ABCD</i> описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды <i>ABCD', ABDC', ACDB', BCDA'</i>, вершины которых лежат на этой сфере. Найдите угол между плоскостями <i>ABC'</i> и <i>ACD'</i>.
Центр круга – точка с декартовыми координатами (<i>a, b</i>). Известно, что начало координат лежит внутри круга. Обозначим через <i>S</i><sup>+</sup> общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через <i>S</i><sup>–</sup> – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину <i>S</i><sup>+</sup> – <i>S</i><sup>–</sup>.
<i>a</i> и <i>b</i> – натуральные числа. Известно, что <i>a</i>² + <i>b</i>² делится на <i>ab</i>. Докажите, что <i>a = b</i>.
Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину, отличную от 1 (у каждого из остальных ребро равно 1).
Найдите объём исходного куба.
Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?
Пусть <i>A', B', C', D', E', F'</i> – середины сторон <i>AB, BC, CD, DE, EF, FA</i> произвольного выпуклого шестиугольника <i>ABCDEF</i>. Известны площади треугольников <i>ABC', BCD', CDE', DEF', EFA', FAB'</i>. Найдите площадь шестиугольника <i>ABCDEF</i>.
Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер <i>a, b, c</i> этого куба.
Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?