Олимпиадные задачи из источника «14 турнир (1992/1993 год)» для 11 класса - сложность 3-4 с решениями

Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)

Число рёбер многогранника равно 100.

  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?

  б) Докажите, что для невыпуклого многогранника это число может равняться 96,

  в) но не может равняться 100.

Числовая последовательность определяется условиями:   <img align="absmiddle" src="/storage/problem-media/98159/problem_98159_img_2.gif">

Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?

Функция  <i>f</i>(<i>x</i>) на отрезке [<i>a, b</i>] равна максимуму из нескольких функций вида <i>y = C</i>·10<sup>–|<i>x–d</i>|</sup> (с различными <i>d</i> и <i>C</i>, причём все <i>C</i> положительны). Дано, что

<i>f</i>(<i>a</i>) = <i>f</i>(<i>b</i>). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка