Олимпиадные задачи из источника «XX Олимпиада по геометрии имени И.Ф. Шарыгина (2024 г.)» для 9 класса - сложность 1-3 с решениями
XX Олимпиада по геометрии имени И.Ф. Шарыгина (2024 г.)
НазадНа одной из медиан треугольника $ABC$ нашлась такая точка $P$, что $\angle PAB=\angle PBC=\angle PCA$. Докажите, что на другой медиане найдется такая точка $Q$, что $\angle QBA=\angle QCB=\angle QAC$.
В прямоугольный треугольник $ABC$ вписана окружность, касающаяся гипотенузы $AB$ в точке $T$. Квадраты $ATMP$ и $BTNQ$ лежат вне треугольника. Докажите, что площади треугольников $ABC$ и $TPQ$ равны.
В треугольнике $ABC$ провели биссектрисы $BE$ и $CF$. Докажите, что $2EF \leq BF+CE$.
Диагонали вписанного четырёхугольника $ABCD$ пересекаются в точке $P$. Биссектриса угла $ABD$ пересекает диагональ $AC$ в точке $E$, а биссектриса угла $ACD$ – диагональ $BD$ в точке $F$. Докажите, что прямые $AF$ и $DE$ пересекаются на медиане треугольника $APD$.
В равнобедренном треугольнике $ABC$ ($AC=BC$) $O$ – центр описанной окружности, $H$ – ортоцентр, $P$ – такая точка внутри треугольника, что $\angle APH=\angle BPO=\pi/2$. Докажите, что $\angle PAC=\angle PBA=\angle PCB$.
Для каких $n>0$ можно отметить на плоскости несколько различных точек и несколько различных окружностей так, чтобы были выполнены следующие условия: - через каждую отмеченную точку проходит ровно $n$ отмеченных окружностей;
- на каждой отмеченной окружности лежит ровно $n$ отмеченных точек;
- у каждой отмеченной окружности отмечен еe центр?
Пусть $(P,P')$ и $(Q,Q')$ – две пары точек, изогонально сопряженных относительно треугольника $ABC$, $R$ – точка пересечения прямых $PQ$ и $P'Q'$. Докажите, что педальные окружности точек $P$, $Q$ и $R$ соосны.
Даны 4 точки на плоскости $A$, $B$, $C$, $D$, не образующие прямоугольник. Пусть стороны треугольника $T$ равны $AB+CD$, $AC+BD$, $AD+BC$. Докажите, что $T$ – остроугольный.
В остроугольном треугольнике $ABC$ $H$ – ортоцентр; $A_1$, $B_1$, $C_1$ – точки касания вписанной окружности с $BC$, $CA$, $AB$ соответственно; $E_A$, $E_B$, $E_C$ – середины $AH$, $BH$, $CH$ соответственно; окружность с центром $E_A$, проходящая через $A$, повторно пересекает биссектрису угла $A$ в точке $A_2$; точки $B_2$, $C_2$ определены аналогично. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.
Из картона вырезали два многоугольника. Может ли быть, что при любом их расположении на плоскости они либо имеют общие внутренние точки, либо пересекаются по конечному множеству точек?
Дан выпуклый четырехугольник $ABCD$. Прямая $l \parallel AC$ пересекает прямые $AD, BC, AB, CD$ в точках $X, Y, Z, T$. Описанные окружности треугольников $XYB$ и $ZTB$ вторично пересекаются в точке $R$. Докажите, что $R$ лежит на прямой $BD$.
Окружность $\omega$ касается прямых $a$ и $b$ в точках $A$ и $B$ соответственно. Произвольная касательная к $\omega$ пересекает $a$ и $b$ в точках $X$ и $Y$ соответственно. Точки $X'$ и $Y'$ симметричны точкам $X$ и $Y$ относительно $A$ и $B$ соответственно. Найдите геометрическое место проекций центра окружности на $X'Y'$.
Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.
Из бумаги вырезан квадрат, сторона которого равна 1. Сделав не больше 20 сгибов, постройте отрезок длины 1/2024. Никаких инструментов нет, можно только сгибать бумагу по прямым и отмечать точки пересечения линий сгиба.
В остроугольном треугольнике $ABC$ точка $D$ – основание высоты из вершины $A$, $A'$ – точка описанной окружности, диаметрально противоположная $A$. На отрезке $AD$ выбрана точка $P$, а на отрезках $AB$ и $AC$ точки $X$ и $Y$ так, что $\angle CBP=\angle ADY$, $\angle BCP=\angle ADX$. Пусть $PA'$ пересекает $BC$ в точке $T$. Докажите, что $D$, $X$, $Y$, $T$ лежат на одной окружности.
В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам.
Даны окружность $\omega$ с центром $O$ и точка $P$ внутри нее. Пусть $X$ – произвольная точка $\omega$, прямая $XP$ и окружность $XOP$ пересекают $\omega$ во второй раз в точках $X_1$, $X_2$ соответственно. Докажите, что все прямые $X_1X_2$ параллельны друг другу.
По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых.
Дан отрезок $AB$. Пусть $C$ – произвольная точка на серединном перпендикуляре к $AB$; $O$ – точка на описанной окружности треугольника $ABC$, противоположная $C$; эллипс с центром $O$ касается прямых $AB$, $BC$, $CA$. Найдите геометрическое место точек касания эллипса с прямой $BC$.
Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).
На плоскости начерчены треугольник $ABC$, описанная около него окружность и центр $I$ его вписанной окружности. Пользуясь только линейкой, постройте центр описанной окружности.
Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $I_a$ – центр вневписанной окружности, соответствующей вершине $A$; $I'_a$ – точка, симметричная $I_a$ относительно прямой $AA_1$. Аналогично построим точки $I'_b$, $I'_c$. Докажите, что прямые $A_1I'_a$, $B_1I'_b$, $C_1I'_c$ пересекаются в одной точке.
Окружность $\omega$, вписанная в неравнобедренный треугольник $ABC$, касается его сторон $BC, CA$ и $AB$ в точках $D, E$ и $F$ соответственно. Точка $M$ на луче $EF$ такова, что $EM = AB$. Точка $N$ на луче $FE$ такова, что $FN = AC$. Окружности $BFM$ и $CEN$ повторно пересекают $\omega$ в точках $S$ и $T$ соответственно. Докажите, что прямые $BS, CT$ и $AD$ пересекаются в одной точке.
Разность двух углов треугольника больше $90^{\circ}$. Докажите, что отношение радиусов его описанной и вписанной окружностей больше 4.
Верно ли, что любой многоугольник можно разрезать на равнобокие трапеции?