Олимпиадные задачи из источника «Заочный тур»
Заочный тур
НазадВ пирамиде $SABC$ все углы при вершине $S$ прямые. Точки $A'$, $B'$, $C'$ на ребрах $SA$, $SB$, $SC$ соответственно таковы, что треугольники $ABC$ и $A'B'C'$ подобны. Верно ли, что плоскости $ABC$ и $A'B'C'$ параллельны?
По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых.
Дан отрезок $AB$. Пусть $C$ – произвольная точка на серединном перпендикуляре к $AB$; $O$ – точка на описанной окружности треугольника $ABC$, противоположная $C$; эллипс с центром $O$ касается прямых $AB$, $BC$, $CA$. Найдите геометрическое место точек касания эллипса с прямой $BC$.
Хорда $PQ$ окружности, описанной около треугольника $ABC$, пересекает стороны $BC$, $AC$ в точках $A'$, $B'$ соответственно. Касательные к окружности в точках $A$ и $B$ пересекаются в точке $X$, а касательные в точках $P$ и $Q$ – в точке $Y$. Прямая $XY$ пересекает $AB$ в точке $C'$. Докажите, что прямые $AA'$, $BB'$ и $CC'$ пересекаются в одной точке.
Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).
На плоскости начерчены треугольник $ABC$, описанная около него окружность и центр $I$ его вписанной окружности. Пользуясь только линейкой, постройте центр описанной окружности.
Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $I_a$ – центр вневписанной окружности, соответствующей вершине $A$; $I'_a$ – точка, симметричная $I_a$ относительно прямой $AA_1$. Аналогично построим точки $I'_b$, $I'_c$. Докажите, что прямые $A_1I'_a$, $B_1I'_b$, $C_1I'_c$ пересекаются в одной точке.
Окружность $\omega$, вписанная в неравнобедренный треугольник $ABC$, касается его сторон $BC, CA$ и $AB$ в точках $D, E$ и $F$ соответственно. Точка $M$ на луче $EF$ такова, что $EM = AB$. Точка $N$ на луче $FE$ такова, что $FN = AC$. Окружности $BFM$ и $CEN$ повторно пересекают $\omega$ в точках $S$ и $T$ соответственно. Докажите, что прямые $BS, CT$ и $AD$ пересекаются в одной точке.
В треугольнике $ABC$ проведены биссектрисы $AA_1$, $BB_1$ и $CC_1$. Отрезки $BB_1$ и $A_1C_1$ пересекаются в точке $D$. Точка $E$ – проекция точки $D$ на сторону $AC$. Точки $P$ и $Q$ лежат на сторонах $AB$ и $BC$ соответственно так, что $EP=PD$, $EQ=QD$. Докажите, что $\angle PDB_1=\angle EDQ$.
Разность двух углов треугольника больше $90^{\circ}$. Докажите, что отношение радиусов его описанной и вписанной окружностей больше 4.
Вписанная окружность $\omega$ прямоугольного треугольника $ABC$ касается окружности, проходящей через середины его сторон, в точке $F$. Из середины $O$ гипотенузы $AB$ проведена касательная $OE$ к $\omega$, отличная от $AB$. Докажите, что $CE=CF$.
Верно ли, что любой многоугольник можно разрезать на равнобокие трапеции?
Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.
Треугольник $ABC$ вписан в окружность $\omega$. Точка $T$ на прямой $BC$ выбрана так, что прямая $AT$ касается $\omega$. Биссектриса угла $BAC$ пересекает отрезок $BC$ в точке $L$, а окружность $\omega$ в точке $A_0$. Прямая $TA_0$ пересекает $\omega$ в точке $P$. Точка $K$ на отрезке $BC$ такова, что $BL=CK$. Докажите, что $\angle BAP=\angle CAK$.
В трапецию $ABCD$ ($AD\parallel BC$) вписана окружность $\omega$, которая касается сторон $AB$, $BC$, $CD$ и $AD$ в точках $P$, $Q$, $R$, $S$ соответственно. Прямая, проходящая через точку $P$ параллельно основаниям трапеции, пересекает прямую $QR$ в точке $X$. Докажите, что прямые $AB$, $QS$ и $DX$ пересекаются в одной точке.
В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности.
Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
Даны окружность $\omega$ и точки $A$ и $B$ на ней. Пусть $C$ – произвольная точка на одной из дуг $AB$ этой окружности, $CL$ – биссектриса треугольника $ABC$, окружность $BCL$ пересекает $AC$ в $E$, а $CL$ пересекает $BE$ в $F$. Найдите геометрическое место центров окружностей $AFC$.
Точки $A'$, $B'$, $C'$ соответственно симметричны вершинам $A$, $B$, $C$ относительно противоположных сторон треугольника $ABC$. Докажите, что окружности $AB'C'$, $A'BC'$ и $A'B'C$ пересекаются в одной точке.
В треугольнике $ABC$ вписанная окружность $\omega$ касается сторон $BC$, $CA$, $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно, $P$ – произвольная точка этой окружности. Прямая $AP$ вторично пересекает описанную окружность треугольника $AB_1C_1$ в точке $A_2$. Аналогично строятся точки $B_2$ и $C_2$. Докажите, что описанная около треугольника $A_2B_2C_2$ окружность касается $\omega$.
В остроугольном треугольнике $ABC$ точка $M$ – середина меньшей дуги $BC$ описанной окружности. Окружность $\omega$ касается сторон $AB$, $AC$ в точках $P$, $Q$ соответственно и проходит через точку $M$. Докажите,что $BP+CQ=PQ$.
Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей?
Биссектрисы $AI$ и $CI$ пересекают описанную окружность треугольника $ABC$ в точках $A_1$, $C_1$ соответственно. Описанная окружность треугольника $AIC_1$ пересекает сторону $AB$ в точке $C_0$; аналогично определим $A_0$. Докажите, что точки $A_0,$ $A_1$, $C_0$, $C_1$ лежат на одной прямой.