Олимпиадные задачи по математике
У Васи есть пластмассовый угольник (без делений) с углами 30°, 60° и 90. Ему нужно построить угол в 15°. Как это сделать, не используя других инструментов?
Разность двух углов треугольника больше $90^{\circ}$. Докажите, что отношение радиусов его описанной и вписанной окружностей больше 4.
Пусть $X$ — некоторая фиксированная точка на стороне $AC$ треугольника $ABC$ ($X$ отлична от $A$ и $C$). Произвольная окружность, проходящая через $X$ и $B$, пересекает отрезок $AC$ и описанную окружность треугольника $ABC$ в точках $P$ и $Q$, отличных от $X$ и $B$. Докажите, что все возможные прямые $PQ$ проходят через одну точку.
В треугольнике $ABC$ провели биссектрису $CL$. Серединный перпендикуляр к стороне $AC$ пересекает отрезок $CL$ в точке $K$.
Докажите, что описанные окружности треугольников $ABC$ и $AKL$ касаются.
На диагонали <i>AC</i> вписанного четырёхугольника <i>ABCD</i> взяли произвольную точку <i>P</i> и из неё опустили перпендикуляры <i>PK, PL, PM, PN, PO</i> на прямые <i>AB, BC, CD, DA, BD</i> соответственно. Докажите, что расстояние от <i>P</i> до <i>KN</i> равно расстоянию от <i>O</i> до <i>ML</i>.
В прямоугольном треугольнике <i>ABC</i> из вершины прямого угла <i>C</i> опущена высота <i>CH</i>. В треугольники <i>ACH</i> и <i>BCH</i> вписали окружности; <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> – их центры; <i>P</i><sub>1</sub> и <i>P</i><sub>2</sub> – их точки касания с <i>AC</i> и <i>BC</i>. Докажите, что прямые <i>O</i><sub>1</sub><i>P</i><sub>1</sub> и <i>O</i><sub>2</sub><i>P</i><sub>2</sub> пересекаются на <i>AB</i>.
Прямая <i>l</i> перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую <i>l</i> в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися.
Диагонали вписанного четырёхугольника <i>ABCD</i> пересекаются в точке <i>M</i>, ∠<i>AMB</i> = 60°. На сторонах <i>AD</i> и <i>BC</i> во внешнюю сторону построены равносторонние треугольники <i>ADK</i> и <i>BCL</i>. Прямая <i>KL</i> пересекает описанную около <i>ABCD</i> окружность в точках <i>P</i> и <i>Q</i>. Докажите, что <i>PK = LQ</i>.