Олимпиадные задачи из источника «XV Олимпиада по геометрии имени И.Ф. Шарыгина (2019 г.)» для 8 класса
XV Олимпиада по геометрии имени И.Ф. Шарыгина (2019 г.)
НазадКорабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)
Пусть точка $P$ лежит на описанной окружности треугольника $ABC$. Точка $A_1$ симметрична ортоцентру треугольника $PBC$ относительно серединного перпендикуляра к $BC$. Точки $B_1$ и $C_1$ определяются аналогично. Докажите, что точки $A_1$, $B_1$ и $C_1$ лежат на одной прямой.
Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.
Найдите наименьшее натуральное $k$ такое, что в любом выпуклом $1001$-угольнике сумма длин любых $k$ диагоналей не меньше суммы длин остальных диагоналей.
Дан треугольник $ABC$. На сторонах $AB$ и $BC$ взяты точки $M$ и $N$ так, что $MN\parallel AC$. Точки $M'$ и $N'$ симметричны соответственно точкам $M$ и $N$ относительно сторон $BC$ и $AB$ соответственно. Пусть $M'A$ пересекает $BC$ в точке $X$, а $N'C$ пересекает $AB$ в точке $Y$. Докажите, что точки $A$, $C$, $X$, $Y$ лежат на одной окружности.
Точка $H$ лежит на стороне $AB$ правильного пятиугольника $ABCDE$. Окружность с центром $H$ и радиусом $HE$ пересекает отрезки $DE$ и $CD$ в точках $G$ и $F$ соответственно. Известно, что $DG=AH$. Докажите, что $CF=AH$.
На клетчатой бумаге нарисовали треугольник, один из углов которого равен $45^{\circ}$ (см.рис.). Найдите значения остальных углов. <img src="/storage/problem-media/66797/problem_66797_img_2.png">
В остроугольном треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно, $AB < AC$. Прямая, проходящая через середину $K$ отрезка $AH$ и перпендикулярная $OK$, пересекает сторону $AB$ и касательную к описанной окружности в точке $A$ в точках $X$ и $Y$ соответственно. Докажите, что $\angle XOY=\angle AOB$.
С помощью фанерного квадрата постройте правильный треугольник (<i>можно проводить прямые через две точки, расстояние между которыми не превышает стороны квадрата, проводить перпендикуляр из точки на прямую, если расстояние между ними не превышает стороны квадрата, и откладывать на проведенных прямых отрезки, равные стороне или диагонали квадрата</i>).
Внутри треугольника $ABC$ взята такая точка $M$, что $AM = \frac{1}{2} AB$, а $CM = \frac{1}{2} BC$. Точки $C_0$ и $A_0$ взяты на отрезках $AB$ и $CB$ соответственно, причем $BC_0 : AC_0 = BA_0 : CA_0 = 3$. Докажите, что $M$ равноудалена от $C_0$ и $A_0$.
Трапеция с основаниями $AB$ и $CD$ вписана в окружность с центром $O$. Из точки $A$ к описанной окружности треугольника $CDO$ проведены касательные $AP$ и $AQ$. Докажите, что описанная окружность треугольника $APQ$ проходит через середину основания $AB$.
Пусть $A_1A_2A_3$ – остроугольный треугольник, радиус описанной окружности равен $1$, $O$ – ее центр. Из вершин $A_i$ проведены чевианы через $O$ до пересечения с противолежащими сторонами в точках $B_i$ соответственно $(i=1, 2, 3)$. (а) Из трех отрезков $B_iO$ выберем самый длинный. Какова его наименьшая возможная длина?
(б) Из трех отрезков $B_iO$ выберем самый короткий. Какова его наибольшая возможная длина?
Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?
В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$.
В остроугольном треугольнике $ABC$ $A_M$ – середина стороны $BC$, $A_H$ – основание высоты, опущенной на эту сторону. Аналогично определяются точки $B_M$, $B_H$, $C_M$, $C_H$. Докажите, что одно из отношений $A_MA_H:A_HA$, $B_MB_H:B_HB$, $C_MC_H:C_HC$ равно сумме двух других.
Окружность $\omega_1$ проходит через вершину $A$ параллелограмма $ABCD$ и касается лучей $CB$, $CD$. Окружность $\omega_2$ касается лучей $AB$, $AD$ и касается внешним образом $\omega_1$ в точке $T$. Докажите, что $T$ лежит на диагонали $AC$.
В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности.
Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный.
На плоскости даны точки $A$, $B$, $C$ и $D$ общего положения и проходящая через $B$ и $C$ окружность $\omega$. Точка $P$ движется по $\omega$. Обозначим через $Q$ точку пересечения описанных окружностей треугольников $ABP$ и $PCD$, отличную от $P$. Найдите геометрическое место точек $Q$.
В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$.
Внутри окружности расположен прямоугольник $ABCD$. Лучи $BA$ и $DA$ пересекают окружность в точках $A_1$ и $A_2$. Точка $A_0$ – середина хорды $A_1A_2$. Аналогично определяются точки $B_0$, $C_0$, $D_0$. Докажите, чтоотрезки $A_0C_0$ и $B_0D_0$ равны.
Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$. Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.
В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.