Олимпиадные задачи из источника «10 класс» для 9 класса
10 класс
НазадПусть <i>H</i> – ортоцентр треугольника <i>ABC, X</i> – произвольная точка. Окружность с диаметром <i>XH</i> вторично пересекает прямые <i>AH, BH, CH</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub>, а прямые <i>AX, BX, CX</i> в точках <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub>. Доказать, что прямые <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub>, <i> C</i><sub>1</sub><i>C</i&...
Две окружности радиуса 1 пересекаются в точках <i>X, Y</i>, расстояние между которыми также равно 1. Из точки <i>C</i> одной окружности проведены касательные <i>CA, CB</i> к другой. Прямая <i>CB</i> вторично пересекает первую окружность в точке <i>A'</i>. Найти расстояние <i>AA'</i>.
На плоскости даны два отрезка <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub>, причём <sup><i>A</i><sub>2</sub><i>B</i><sub>2</sub></sup>/<sub><i>A</i><sub>1</sub><i>B</i><sub>1</sub></sub> = <i>k</i> < 1. На отрезке <i>A</i><sub>1</sub><i>A</i><sub>2</sub> взята точка <i>A</i><sub>3</sub>, а на продолжении этого отрезка за точку <i>А</i><sub>2</sub> – точка <i>А</i><sub>4</sub> так, что <sup><i>...
В окружности с центром <i>O</i> проведены две параллельные хорды <i>AB</i> и <i>CD</i>. Окружности с диаметрами <i>AB</i> и <i>CD</i> пересекаются в точке <i>P</i>.
Доказать, что середина отрезка <i>OP</i> равноудалена от прямых <i>AB</i> и <i>CD</i>.
Треугольник можно разрезать на три подобных друг другу треугольника.
Доказать, что его можно разрезать на любое число подобных друг другу треугольников.
Дан выпуклый четырёхугольник без параллельных сторон. Для каждой тройки его вершин строится точка, дополняющая эту тройку до параллелограмма, одна из диагоналей которого совпадает с диагональю четырёхугольника. Доказать, что из четырёх построенных точек ровно одна лежит внутри исходного четырёхугольника.