Олимпиадные задачи из источника «2011 год» для 7 класса - сложность 2 с решениями
В окружности с центром <i>O</i> проведена хорда <i>AB</i> и радиус <i>OK</i>, пересекающий её под прямым углом в точке <i>M</i>. На большей дуге <i>AB</i> окружности выбрана точка <i>P</i>, отличная от середины этой дуги. Прямая <i>PM</i> вторично пересекает окружность в точке <i>Q</i>, а прямая <i>PK</i> пересекает <i>AB</i> в точке <i>R</i>. Докажите, что <i>KR > MQ</i>.
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
На сторонах <i>AC</i> и <i>BC</i> треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>N</i> соответственно так, что <i>MN || AB</i>. На стороне <i>AC</i> отмечена точка <i>K</i> так, что <i>CK = AM</i>. Отрезки <i>AN</i> и <i>BK</i> пересекаются в точке <i>F</i>. Докажите, что площади треугольника <i>ABF</i> и четырёхугольника <i>KFNC</i> равны.
Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?
<i>AL</i> – биссектриса треугольника <i>ABC, K</i> – такая точка на стороне <i>AC</i>, что <i>CK = CL</i>. Прямая <i>KL</i> и биссектриса угла <i>B</i> пересекаются в точке <i>P</i>.
Докажите, что <i>AP = PL</i>.
Незнайка утверждает, что существует восемь таких последовательных натуральных чисел, что в разложение их на простые множители каждый множитель входит в нечётной степени (например, два таких последовательных числа: 23 = 23<sup>1</sup> и 24 = 2³·3<sup>1</sup>). Прав ли он?
В трапеции <i>ABCD</i> основание <i>AD</i> в четыре раза больше чем <i>BC</i>. Прямая, проходящая через середину диагонали <i>BD</i> и параллельная <i>AB</i>, пересекает сторону <i>CD</i> в точке <i>K</i>. Найдите отношение <i>DK</i> : <i>KC</i>.
Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. На продолжении стороны <i>AB</i> за точку <i>B</i> отмечена такая точка <i>M</i>, что <i>MC = MD</i>.
Докажите, что ∠<i>AMO</i> = ∠<i>MAD</i>.
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
Назовём натуральное семизначное число <i>удачным</i>, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?
На стороне <i>AB</i> треугольника <i>ABC</i> отмечена точка <i>K</i>. Отрезок <i>CK</i> пересекает медиану <i>AM</i> треугольника в точке <i>P</i>. Оказалось, что <i>AK = AP</i>.
Найдите отношение <i>BK</i> : <i>PM</i>.