Олимпиадные задачи из источника «2006 год» - сложность 3 с решениями

На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.

Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?

Можно ли намотать нерастяжимую ленту на бесконечный конус так, чгобы сделать вокруг его оси бесконечно много оборотов? Ленту нельзя наматывать на вершину конуса, а также разрезать и перекручивать. При необходимости можно считать, что она бесконечна, а угол между осью и образующей конуса достаточно мал.

Натуральное число <i>n</i> таково, что  3<i>n</i> + 1  и  10<i>n</i> + 1  являются квадратами натуральных чисел. Докажите, что число  29<i>n</i> + 11  – составное.

Можно ли замостить все пространство равными тетраэдрами, все грани которых — прямоугольные треугольники?

Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?

Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?

Назовем <i>тропинкой</i> замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки <i>M</i> на ней, что любая прямая, проходящая через <i>M, делит тропинку пополам</i>, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости.

Дан остроугольный треугольник <i>ABC</i>. На сторонах <i>AB</i> и <i>BC</i> во внешнюю сторону построены равные прямоугольники <i>ABMN</i> и <i>LBCK</i> так, что  <i>AB = KC</i>.

Докажите, что прямые <i>AL, NK</i> и <i>MC</i> пересекаются в одной точке.

Каждую неделю Ваня получает ровно одну оценку ("3", "4" или "5") по каждому из семи предметов. Он считает неделю удачной, если количество предметов, по которым оценка улучшилась, превышает хотя бы на два количество предметов, по которым оценка ухудшилась. Оказалось, что <i>n</i> недель подряд были удачными, и в последнюю из них оценка по каждому предмету в точности совпала с оценкой первой недели. Чему могло равняться число <i>n</i>?

Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.). <img src="/storage/problem-media/105201/problem_105201_img_2.png"> Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка