Олимпиадные задачи из источника «1955 год» для 9 класса - сложность 3 с решениями

Числа [<i>a</i>], [2<i>a</i>], ..., [<i>Na</i>] различны между собой, и числа$\left[\vphantom{\frac{1}{a}}\right.$${\frac{1}{a}}$$\left.\vphantom{\frac{1}{a}}\right]$,$\left[\vphantom{\frac{2}{a}}\right.$${\frac{2}{a}}$$\left.\vphantom{\frac{2}{a}}\right]$, ...,$\left[\vphantom{\frac{M}{a}}\right.$${\frac{M}{a}}$$\left.\vphantom{\frac{M}{a}}\right]$тоже различны между собой. Найти все такие<i>a</i>.

Трёхчлен  <i>ax</i>² + <i>bx + c</i>  при всех целых <i>x</i> является точной четвёртой степенью. Доказать, что тогда  <i>a = b</i> = 0.

<i>p</i> простых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>p</sub></i> образуют возрастающую арифметическую прогрессию и  <i>a</i><sub>1</sub> > <i>p</i>.

Доказать, что если <i>p</i> – простое число, то разность прогрессии делится на <i>p</i>.

Найти геометрическое место середин отрезков с концами на двух различных непересекающихся окружностях, лежащих одна вне другой.

Дан равносторонний$\Delta$<i>ABC</i>. На сторонах<i>AB</i>и<i>BC</i>взяты точки<i>D</i>и<i>E</i>так, что<i>AE</i>=<i>CD</i>. Найти геометрическое место точек пересечения отрезков<i>AE</i>и<i>CD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка