Олимпиадные задачи из источника «2025 год» - сложность 2 с решениями
На стороне $AB$ треугольника $ABC$ отметили точку $M$ так, что $AM=BC$. Из точек $M$ и $B$ на сторону $AC$ опустили перпендикуляры $MK$ и $BH$ (см. рис.). $AC$ вдвое больше $KH$. Угол $A$ равен $22$ градусам. Найдите угол $C$.<img src="/storage/problem-media/67391/problem_67391_img_2.png">
У математика есть набор из 16 гирь: 1/3 кг, 1/4 кг, 1/5 кг, ..., 1/18 кг. На левой чаше весов лежит груз 1 кг. Какие гири положить на правую чашу весов, чтобы уравновесить груз? (Достаточно привести один пример.)
Катя каждый день ест на завтрак либо кашу, либо яичницу, либо сырники, но никогда не ест два дня подряд одно и то же. В течение двух недель Катя записывала, чем она завтракала. Оказалось, что сырники она ела в два раза чаще, чем кашу. Сколько раз за эти две недели Катя завтракала яичницей?
Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)
Из 54 красных и 54 белых брусков 1×1×2 сложили куб 6×6×6. Какое наибольшее количество красных клеточек могло оказаться на поверхности куба?
В Тридевятом царстве на каждом перекрёстке сходится ровно три дорожки. Было у царя три сына, старшие умные, а младший Иван – дурак. Послал старик сыновей за молодильными яблоками. Старший, выйдя из дворца, на первом перекрёстке свернул налево, на следующем направо, потом налево, снова направо – и дошёл до волшебной яблони. Средний на первом перекрёстке свернул направо, потом налево, снова направо, снова налево – и тоже дошёл до этой яблони. А Иван на всех перекрёстках поворачивал направо, три раза повернул да и пришёл обратно во дворец несолоно хлебавши. Нарисуйте пример, как может выглядеть схема дорожек в Тридевятом царстве, если известно, что и от царского дворца, и от яблони отходит ровно по одной дорожке.
Собрались на состязанье йог, бульдог и носорог. Один из них ловчее всех и всегда лжёт, другой — смелее всех и всегда говорит правду, третий — быстрее всех, может говорить и ложь, и правду. Они сделали три заявления. <i>Йог:</i>Самый быстрый смелее меня. <i>Бульдог:</i>Я быстрее самого ловкого. <i>Носорог:</i>Я ловчее самого смелого. Кто из них самый медленный?
В записи $12345678 = 1$ вставьте знаки умножения и деления между некоторыми цифрами так, чтобы равенство стало верным.