Олимпиадные задачи из источника «Кружки, факультативы, спецкурсы» для 3-6 класса
Кружки, факультативы, спецкурсы
Все источникиМожно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
На прямой через равные промежутки поставили десять точек, и они заняли отрезок длины <i>a</i>. На другой прямой через такие же промежутки поставили 100 точек, и они заняли отрезок длины <i>b</i>. Во сколько раз <i>b</i> больше <i>a</i>?
Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, <sup>1</sup>/<sub>70</sub> – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?
Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть?
31-го декабря Антон сказал, что после Нового Года всё, сказанное им до Нового Года станет ложью. Правду ли он сказал?
a) Докажите, что в любой футбольной команде есть два игрока, которые родились в один и тот же день недели. b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день.
На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?
По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой.
Можно ли расставить знаки «+» или «–» между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?
После проверки диктанта выяснилось, что учеников, которые ошиблись при написании слова «интеллект» в точности столько же, сколько написавших это слово правильно. Могло ли за этот диктант пятерок быть поставлено ровно на 15 меньше, чем остальных оценок?
Петя сложил несколько чисел, среди которых было <i>N</i> чётных и <i>M</i> нечётных. Вы можете спросить у Пети про одно из чисел <i>N</i> или <i>M</i>, на ваш выбор, чётное ли оно. Достаточно ли этого, чтобы узнать, чётной или нечётной будет полученная Петей сумма?
Сможете ли вы найти шесть целых чисел, сумма и произведение которых являются нечётными числами? А двести?
Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?
Сумма трёх чисел чётна. Каким — чётным или нечётным — будет их произведение?
Как вы считаете, какой — чётной или нечётной — будет сумма: а) двух чётных чисел; б) двух нечётных чисел; в) чётного и нечётного чисел? Ответ обоснуйте.
Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.
Ученики 7 класса решали две задачи. В конце занятия учитель составил четыре списка: I – решивших первую задачу, II – решивших только одну задачу, III – решивших по крайней мере одну задачу, IV – решивших обе задачи. Какой из списков самый длинный? Могут ли два списка совпадать по составу? Если да, то какие?
Сколько существует натуральных чисел, не превосходящих 1000, которые делятся на 3? На 5? На 15? Не делятся ни на 3, ни на 5?
В летнем лагере 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке?
В классе все увлекаются математикой или биологией. Сколько человек в классе, если математикой занимаются 15 человек, биологией – 20, а математикой и биологией – 10?
В киоске около школы продается мороженое двух видов: «Спортивное» и «Мальвина». На перемене 24 ученика успели купить мороженое. При этом 15 из них купили «Спортивное», а 17 – мороженое «Мальвина». Сколько человек купили мороженое обоих сортов?
На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
Монету в 1 копейку обкатывают вокруг такой же монеты. а) Сколько она сделает полных оборотов вокруг<i>своей</i>оси? б) А если её будут обкатывать вокруг монеты в полдоллара? (Напомним, что диаметр копейки - 15 мм, диаметр монеты в полдоллара - 30 мм.)
Доказать, что среди любых одиннадцати целых чисел найдутся два, разность между которыми делится на 10.
10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.